Alison Rosenblum

Purdue University

October 19, 2022

You thought you knew \mathbb{R} ...

Subsets of the real numbers

You thought you knew \mathbb{R} ...

Subsets of the real numbers

▶ Q, Z, N

You thought you knew $\mathbb{R} \dots$

Subsets of the real numbers

- ▶ Q, Z, N
- ▶ Points and intervals: (-2, 0), [-1, 1], $(-8.76, \pi]$, $\{\frac{1}{3}\}$, $[50, \infty)$, etc.

You thought you knew $\mathbb{R} \dots$

Subsets of the real numbers

- ▶ Q, Z, N
- ▶ Points and intervals: (-2, 0), [-1, 1], $(-8.76, \pi]$, $\{\frac{1}{3}\}$, $[50, \infty)$, etc.
- The Cantor Set

The Cantor Set

Bounded

Measure zero

- Bounded
- Measure zero
- Uncountably infinite

- Bounded
- Measure zero
- Uncountably infinite
- Nowhere dense

- Bounded
- Measure zero
- Uncountably infinite
- Nowhere dense
- Accumulates everywhere

- Bounded
- Measure zero
- Uncountably infinite
- Nowhere dense
- Accumulates everywhere
- Totally disconnected

More Monsters of \mathbb{R}^n

Our Itinerary:

- Welcome Center (definitions and examples)
- Walk to the Cell Decomposition Theorem
- Vista from Cell Decomposition

Our Itinerary:

- Welcome Center (definitions and examples)
- Walk to the Cell Decomposition Theorem
- Vista from Cell Decomposition
- All Groups are Abelian

Our Itinerary:

- Welcome Center (definitions and examples)
- Walk to the Cell Decomposition Theorem
- Vista from Cell Decomposition
- All Groups are Abelian (ish)

Welcome to O-Minimality

O-Minimal Structures

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

() Unions, intersections, and complements of sets in ${\mathcal{S}}$

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

- **(**) Unions, intersections, and complements of sets in ${\mathcal S}$
- **Q** Cartesian products $(A \times B)$ of sets in S
- Coordinate projections of sets in $S(\pi(A)$ where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ takes $(x_1, \ldots, x_m, x_{m+1}) \mapsto (x_1, \ldots, x_m)$).

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

- **(**) Unions, intersections, and complements of sets in ${\mathcal S}$
- **Q** Cartesian products $(A \times B)$ of sets in S
- Coordinate projections of sets in $S(\pi(A)$ where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ takes $(x_1, \ldots, x_m, x_{m+1}) \mapsto (x_1, \ldots, x_m)$).
- Each set $\{(x_1, \ldots, x_m) \in \mathbb{R}^m \mid x_i = x_j\}$

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

- **(**) Unions, intersections, and complements of sets in ${\mathcal S}$
- **2** Cartesian products $(A \times B)$ of sets in S
- Coordinate projections of sets in $S(\pi(A)$ where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ takes $(x_1, \ldots, x_m, x_{m+1}) \mapsto (x_1, \ldots, x_m)$).

$$\bigcirc \quad \mathsf{Each set} \ \{(x_1,\ldots,x_m) \in \mathbb{R}^m \mid x_i = x_j\}$$

An o-minimal structure is a structure with

$$\bigcirc \ \{(x,y) \in \mathbb{R}^2 \mid x < y\} \text{ in } \mathcal{S}$$

() All subsets of \mathbb{R}^1 in \mathcal{S} are finite unions of points and intervals

Semialgebraic Sets: assembled from

$$\{oldsymbol{x}\in\mathbb{R}^n\mid f(oldsymbol{x})=0\}$$
 and $\{oldsymbol{x}\in\mathbb{R}^n\mid g(oldsymbol{x})>0\}$

for f, g polynomials

Semialgebraic Sets: assembled from

$$\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) = 0 \}$$
 and $\{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) > 0 \}$

for f, g polynomials

Slightly more boring: Semilinear Sets

Semialgebraic Sets: assembled from

$$\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) = 0 \}$$
 and $\{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) > 0 \}$

- for f, g polynomials
- Slightly more boring: Semilinear Sets
- ▶ Structure generated by e^x or by sin(x) where e.g. $0 \le x \le 2\pi$

Semialgebraic Sets: assembled from

$$\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) = 0 \}$$
 and $\{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) > 0 \}$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- ▶ Structure generated by e^x or by sin(x) where e.g. $0 \le x \le 2\pi$
- Globally subanalytic sets

Welcome to O-Minimality

"Definable

Sets in a given structure are called definable

"

"Definable

- Sets in a given structure are called definable
- A function $f : A \to B$ $(A \subset \mathbb{R}^m, B \subset \mathbb{R}^n)$ is definable if its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$ is definable

"Definable

- Sets in a given structure are called definable
- ► A function $f : A \to B$ ($A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$) is definable if its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$ is definable
- etc...

A Few Definable Things

- ▶ $\{r\}$ for $r \in \mathbb{R}$
- Interiors and closures of definable sets
- Inverses and compositions of definable functions (also images and preimages of and restrictions to definable sets)
- Addition and mulitpication definable: sums, products, limits, and derivatives of definable functions

Welcome to O-Minimality

As you set out...

What to expect

What not to expect

What to expect

▶ Infinite subsets of \mathbb{R} contain an interval

What not to expect

What to expect

- Infinite subsets of R contain an interval
- Uniform bounds

What not to expect

What to expect

- Infinite subsets of R contain an interval
- Uniform bounds

What not to expect

Too much 'infiniteness'

What to expect

- ► Infinite subsets of R contain an interval
- Uniform bounds

What not to expect

Too much 'infiniteness'

 $\triangleright \mathbb{Z}$

To the Cell Decomposition Theorem

Monotonicity Theorem

The Monotonicity Theorem

 $f:(a,b) \rightarrow \mathbb{R}$ definable function:

Can find points $a = a_0 < a_1 < \ldots < a_k < a_{k+1} = b$ such that on each subinterval (a_j, a_{j+1}) , either f is constant or f is strictly monotone and continuous.

Cell Decomposition of $\ensuremath{\mathbb{R}}$

PURDUE

A Tourist's Guide to O-Minimality

To the Cell Decomposition Theorem

Cell Decomposition of $\mathbb R$

Cells:

intervals

Cell Decomposition of \mathbb{R}^2

Cells:

vertical "intervals"

- graphs of continuous definable functions on an interval
 - "bands" between two graphs

Cell Decomposition Adapted to a Set

 $A \subset \mathbb{R}^n$ definable:

Cell Decomposition Adapted to a Set

 $A \subset \mathbb{R}^n$ definable:

Can decompose \mathbb{R}^n to write A as a finite union of cells.

Vista from Cell Decomposition

Dimension

Dimension of a definable set: biggest cell dimension present

Vista from Cell Decomposition

Curve Selection

The Curve Selection Lemma

 $A \subset \mathbb{R}^n$ definable, $b \in \overline{A}$.

Curve Selection

The Curve Selection Lemma

 $A \subset \mathbb{R}^n$ definable, $b \in \overline{A}$.

Without o-minimality

Curve Selection

The Curve Selection Lemma

 $A \subset \mathbb{R}^n$ definable, $b \in \overline{A}$. Then there exists a continuous definable map $\gamma : [0,1) \to \mathbb{R}^n$ such that $\gamma(0) = b$ and $\gamma((0,1)) \subset A$.

Connectedness

Definable subsets of \mathbb{R} : connected \Leftrightarrow (definably) path connected

Connectedness

Definable subsets of \mathbb{R} : connected \Leftrightarrow (definably) path connected

Connectedness

Definable subsets of \mathbb{R} : connected \Leftrightarrow (definably) path connected

Triangulation

Another decomposition of definable sets...

Triviality

Definable family: $\{A_x\}_{x\in\mathcal{I}}$ definable sets with $A = \bigcup_{x\in\mathcal{I}} (x, A_x)$ also definable.

Triviality

Definable family: $\{A_x\}_{x\in\mathcal{I}}$ definable sets with $A = \bigcup_{x\in\mathcal{I}} (x, A_x)$ also definable.

Only finitely many "types" of sets among $\{A_x\}$.

Triviality

Definable family: $\{A_x\}_{x\in\mathcal{I}}$ definable sets with $A = \bigcup_{x\in\mathcal{I}} (x, A_x)$ also definable.

Only finitely many "types" of sets among $\{A_x\}$.

Also means "interesting" features of definable sets all clustered in a bounded region

Groups

Group: a set with an operation that behaves (sort of) like addition

Example ((Possibly Unhelpful) Groups)

- \mathbb{R} , operation: addition
- $\mathbb{R}_{>0}$, operation: mulitpication
- $n \times n$ invertible matrices, operation: matrix multiplication

Groups

Group: a set with an operation that behaves (sort of) like addition

Example ((Possibly Unhelpful) Groups)

- \mathbb{R} , operation: addition
- $\mathbb{R}_{>0}$, operation: mulitpication
- ▶ *n* × *n* invertible matrices, operation: matrix multiplication

Identity element e:

- ($\mathbb{R},+$), identity: 0
- \blacktriangleright ($\mathbb{R}_{>0}, \cdot$), identity: 1
- > 2 × 2 invertible matrices, identity: $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$

Groups

PURDUE

Group: a set with an operation that behaves (sort of) like addition

Example ((Possibly Unhelpful) Groups)

- \mathbb{R} , operation: addition
- R_{>0}, operation: mulitpication
- ▶ *n* × *n* invertible matrices, operation: matrix multiplication

Identity element e:

- $(\mathbb{R}, +)$, identity: 0
- \blacktriangleright ($\mathbb{R}_{>0}, \cdot$), identity: 1
- ▶ 2 × 2 invertible matrices, identity: $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$

A subgroup is a subset that is a group under the same operation

Entire group, {e} always subgroups

•
$$(\mathbb{Z},+)$$
 a subgroup of $(\mathbb{R},+)$

Abelian Groups

Definition

A group is Abelian if its operation is commutative

Abelian Groups

Definition

A group is Abelian if its operation is commutative

e.g. matrix mulitpication is not commutative:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 11 & 10 \end{bmatrix} \text{ but } \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 5 & 8 \end{bmatrix}$$

A Tourist's Guide to O-Minimality

Ordered Groups

Souvenier Theorem

Theorem

All groups are Abelian

Souvenier Theorem

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R} , and say $+: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is definable in \mathcal{S} . Then \mathcal{R} is Abelian.

Souvenier Theorem

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R} , and say $+: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is definable in \mathcal{S} . Then \mathcal{R} is Abelian.

Lemma

The only definable subsets of $\mathcal R$ that are also subgroups are $\{e\}$ and $\mathcal R$

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$x < y \Rightarrow z + x < z + y$ and x + z < y + z

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$x < y \Rightarrow z + x < z + y$ and x + z < y + z

Examples

Ordered Groups

► (ℝ_{>0}, ·)

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$x < y \Rightarrow z + x < z + y$ and x + z < y + z

Examples

Purdue

Ordered Groups

Not an Ordered Group

Proof Sketch

Proof (lemma).

Let {e} ≠ H ⊂ R be a definable subgroup. Then H = (-s, s) or H = [-s, s].
Assume not, and say e < r < h for h ∈ H and r ∉ H

e r h r+h 2h r+2h …

 \blacktriangleright $s = \infty$

Proof Sketch

Proof (lemma).

Proof (\mathcal{R} is Abelian).

Purdue

 $e \neq r \in \mathcal{R}$: consider $C(r) = \{s \in \mathcal{R} \mid s + r = r + s\}$, a definable subgroup of \mathcal{R} Since $r \in C(r)$, $C(r) \neq \{e\}$, so $C(R) = \mathcal{R}$ for all $r \in \mathcal{R}$

References

- Saugata Basu, Richard Pollack, and Marie-Françoise Coste-Roy. Algorithms in Real Algebraic Geometry. eng. Vol. 10. Algorithms and Computation in Mathematics. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2006. ISBN: 3642069649.
- Michel Coste. An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa, 2000.
- Lou Van den Dries et al. *Tame topology and o-minimal structures*. Vol. 248. Cambridge university press, 1998.

