A Tourist's Guide to O-Minimality

Alison Rosenblum

Purdue University
October 19, 2022

You thought you knew \mathbb{R}...

Subsets of the real numbers

You thought you knew \mathbb{R}...

Subsets of the real numbers
$\Rightarrow \mathbb{Q}, \mathbb{Z}, \mathbb{N}$

You thought you knew \mathbb{R}...

Subsets of the real numbers

- $\mathbb{Q}, \mathbb{Z}, \mathbb{N}$
\Rightarrow Points and intervals: $(-2,0),[-1,1],(-8.76, \pi],\left\{\frac{1}{3}\right\},[50, \infty)$, etc.

You thought you knew \mathbb{R}...

Subsets of the real numbers

- $\mathbb{Q}, \mathbb{Z}, \mathbb{N}$
- Points and intervals: $(-2,0),[-1,1],(-8.76, \pi],\left\{\frac{1}{3}\right\},[50, \infty)$, etc.
- The Cantor Set

The Cantor Set

The Cantor Set

- Bounded

The Cantor Set

- Bounded
- Measure zero

The Cantor Set

- Bounded
- Measure zero
- Uncountably infinite

The Cantor Set

- Bounded
- Measure zero
- Uncountably infinite
- Nowhere dense

The Cantor Set

- Bounded
- Measure zero
- Uncountably infinite
- Nowhere dense
- Accumulates everywhere

The Cantor Set

- Bounded
- Measure zero
- Uncountably infinite
- Nowhere dense
- Accumulates everywhere
- Totally disconnected

More Monsters of \mathbb{R}^{n}

Welcome to O-Minimality

Welcome to O-Minimality

Our Itinerary:

- Welcome Center (definitions and examples)
- Walk to the Cell Decomposition Theorem
- Vista from Cell Decomposition

Welcome to O-Minimality

Our Itinerary:

- Welcome Center (definitions and examples)
- Walk to the Cell Decomposition Theorem
- Vista from Cell Decomposition
- All Groups are Abelian

Welcome to O-Minimality

Our Itinerary:

- Welcome Center (definitions and examples)
- Walk to the Cell Decomposition Theorem
- Vista from Cell Decomposition
- All Groups are Abelian (ish)

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathbb{R} is a collection of subsets of \mathbb{R}^{n} for each n which contains

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathbb{R} is a collection of subsets of \mathbb{R}^{n} for each n which contains

- Unions, intersections, and complements of sets in \mathcal{S}

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathbb{R} is a collection of subsets of \mathbb{R}^{n} for each n which contains
(1) Unions, intersections, and complements of sets in \mathcal{S}
(2) Cartesian products $(A \times B)$ of sets in \mathcal{S}
© Coordinate projections of sets in $\mathcal{S}\left(\pi(A)\right.$ where $\pi: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m}$ takes $\left.\left(x_{1}, \ldots, x_{m}, x_{m+1}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right)\right)$.

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathbb{R} is a collection of subsets of \mathbb{R}^{n} for each n which contains
(1) Unions, intersections, and complements of sets in \mathcal{S}
(2) Cartesian products $(A \times B)$ of sets in \mathcal{S}
© Coordinate projections of sets in $\mathcal{S}\left(\pi(A)\right.$ where $\pi: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m}$ takes $\left.\left(x_{1}, \ldots, x_{m}, x_{m+1}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right)\right)$.
(1) Each set $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} \mid x_{i}=x_{j}\right\}$

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathbb{R} is a collection of subsets of \mathbb{R}^{n} for each n which contains
(1) Unions, intersections, and complements of sets in \mathcal{S}
(2) Cartesian products $(A \times B)$ of sets in \mathcal{S}
© Coordinate projections of sets in $\mathcal{S}\left(\pi(A)\right.$ where $\pi: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m}$ takes $\left.\left(x_{1}, \ldots, x_{m}, x_{m+1}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right)\right)$.
(0. Each set $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} \mid x_{i}=x_{j}\right\}$

An o-minimal structure is a structure with
(0. $\left\{(x, y) \in \mathbb{R}^{2} \mid x<y\right\}$ in \mathcal{S}
(0) All subsets of \mathbb{R}^{1} in \mathcal{S} are finite unions of points and intervals

Examples

- Semialgebraic Sets: assembled from

$$
\left\{x \in \mathbb{R}^{n} \mid f(x)=0\right\} \text { and }\left\{x \in \mathbb{R}^{n} \mid g(x)>0\right\}
$$

for f, g polynomials

Examples

- Semialgebraic Sets: assembled from

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=0\right\} \text { and }\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x})>0\right\}
$$

for f, g polynomials

- Slightly more boring: Semilinear Sets

Examples

- Semialgebraic Sets: assembled from

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=0\right\} \text { and }\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x})>0\right\}
$$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- Structure generated by e^{x} or by $\sin (x)$ where e.g. $0 \leq x \leq 2 \pi$

Examples

- Semialgebraic Sets: assembled from

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=0\right\} \text { and }\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x})>0\right\}
$$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- Structure generated by e^{x} or by $\sin (x)$ where e.g. $0 \leq x \leq 2 \pi$
- Globally subanalytic sets

"Definable

- Sets in a given structure are called definable

"Definable

- Sets in a given structure are called definable
- A function $f: A \rightarrow B\left(A \subset \mathbb{R}^{m}, B \subset \mathbb{R}^{n}\right)$ is definable if its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$ is definable

"Definable

- Sets in a given structure are called definable
\Rightarrow A function $f: A \rightarrow B\left(A \subset \mathbb{R}^{m}, B \subset \mathbb{R}^{n}\right)$ is definable if its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$ is definable
- etc...

A Few Definable Things

- $\{r\}$ for $r \in \mathbb{R}$
- Interiors and closures of definable sets
- Inverses and compositions of definable functions (also images and preimages of and restrictions to definable sets)
- Addition and mulitpication definable: sums, products, limits, and derivatives of definable functions

As you set out...

What to expect

What not to expect

As you set out...

What to expect

- Infinite subsets of \mathbb{R} contain an interval

What not to expect

As you set out...

What to expect

- Infinite subsets of \mathbb{R} contain an interval
- Uniform bounds

What not to expect

As you set out...

What to expect

- Infinite subsets of \mathbb{R} contain an interval
- Uniform bounds

What not to expect

- Too much 'infiniteness'

As you set out...

What to expect

- Infinite subsets of \mathbb{R} contain an interval
- Uniform bounds

What not to expect

- Too much 'infiniteness'
- \mathbb{Z}

To the Cell Decomposition Theorem

Monotonicity Theorem

The Monotonicity Theorem

$f:(a, b) \rightarrow \mathbb{R}$ definable function:
Can find points $a=a_{0}<a_{1}<\ldots<a_{k}<a_{k+1}=b$ such that on each subinterval $\left(a_{j}, a_{j+1}\right)$, either f is constant or f is strictly monotone and continuous.

Cell Decomposition of \mathbb{R}

Cell Decomposition of \mathbb{R}

Cells:

(1) points
(2) intervals

Cell Decomposition of \mathbb{R}^{2}

Cells:
(1) points
(2) vertical "intervals"
© graphs of continuous definable functions on an interval
© "bands" between two graphs

Cell Decomposition Adapted to a Set

$A \subset \mathbb{R}^{n}$ definable:

Cell Decomposition Adapted to a Set

$A \subset \mathbb{R}^{n}$ definable:
Can decompose \mathbb{R}^{n} to write A as a finite union of cells.

Vista from Cell Decomposition

Dimension

Dimension of a definable set: biggest cell dimension present

Curve Selection

The Curve Selection Lemma

$A \subset \mathbb{R}^{n}$ definable, $b \in \bar{A}$.

Curve Selection

The Curve Selection Lemma

$A \subset \mathbb{R}^{n}$ definable, $b \in \bar{A}$.

Without o-minimality

Curve Selection

The Curve Selection Lemma

$A \subset \mathbb{R}^{n}$ definable, $b \in \bar{A}$. Then there exists a continuous definable map $\gamma:[0,1) \rightarrow \mathbb{R}^{n}$ such that $\gamma(0)=b$ and $\gamma((0,1)) \subset A$.

Without o-minimality

With o-minimality

Connectedness

Definable subsets of \mathbb{R} : connected \Leftrightarrow (definably) path connected

Connectedness

Definable subsets of \mathbb{R} : connected \Leftrightarrow (definably) path connected

Connectedness

Definable subsets of \mathbb{R} : connected \Leftrightarrow (definably) path connected

Triangulation

Another decomposition of definable sets...

Triviality

Definable family: $\left\{A_{x}\right\}_{x \in \mathcal{I}}$ definable sets with $A=\bigcup_{x \in \mathcal{I}}\left(x, A_{x}\right)$ also definable.

Triviality

Definable family: $\left\{A_{x}\right\}_{x \in \mathcal{I}}$ definable sets with $A=\bigcup_{x \in \mathcal{I}}\left(x, A_{x}\right)$ also definable.

Only finitely many "types" of sets among $\left\{A_{x}\right\}$.

Triviality

Definable family: $\left\{A_{x}\right\}_{x \in \mathcal{I}}$ definable sets with $A=\bigcup_{x \in \mathcal{I}}\left(x, A_{x}\right)$ also definable.

Only finitely many "types" of sets among $\left\{A_{x}\right\}$.
Also means "interesting" features of definable sets all clustered in a bounded region

Ordered Groups

Groups

Group: a set with an operation that behaves (sort of) like addition

Example ((Possibly Unhelpful) Groups)

- \mathbb{R}, operation: addition
- $\mathbb{R}_{>0}$, operation: mulitpication
- $n \times n$ invertible matrices, operation: matrix multiplication

Groups

Group: a set with an operation that behaves (sort of) like addition

Example ((Possibly Unhelpful) Groups)

- \mathbb{R}, operation: addition
- $\mathbb{R}_{>0}$, operation: mulitpication
- $n \times n$ invertible matrices, operation: matrix multiplication

Identity element e :
$\Rightarrow(\mathbb{R},+)$, identity: 0
$\rightarrow\left(\mathbb{R}_{>0}, \cdot\right)$, identity: 1
$\Rightarrow 2 \times 2$ invertible matrices, identity: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Groups

Group: a set with an operation that behaves (sort of) like addition

Example ((Possibly Unhelpful) Groups)

- \mathbb{R}, operation: addition
- $\mathbb{R}_{>0}$, operation: mulitpication
- $n \times n$ invertible matrices, operation: matrix multiplication

Identity element e :

- $(\mathbb{R},+)$, identity: 0
- $\left(\mathbb{R}_{>0}, \cdot\right)$, identity: 1
- 2×2 invertible matrices, identity: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

A subgroup is a subset that is a group under the same operation

- Entire group, $\{e\}$ always subgroups
- $(\mathbb{Z},+)$ a subgroup of $(\mathbb{R},+)$

Abelian Groups

Definition

A group is Abelian if its operation is commutative

Abelian Groups

Definition

A group is Abelian if its operation is commutative
e.g. matrix mulitpication is not commutative:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
5 & 4 \\
11 & 10
\end{array}\right] \text { but }\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
7 & 10 \\
5 & 8
\end{array}\right]
$$

Souvenier Theorem

Theorem
All groups are Abelian

Souvenier Theorem

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R}, and say $+: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is definable in \mathcal{S}. Then \mathcal{R} is Abelian.

Souvenier Theorem

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R}, and say $+: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is definable in \mathcal{S}. Then \mathcal{R} is Abelian.

Lemma

The only definable subsets of \mathcal{R} that are also subgroups are $\{e\}$ and \mathcal{R}

Ordered Groups

Definition

An ordered group is a group G with a linear order $<$ such that for all $x, y, z \in G$,

$$
x<y \Rightarrow z+x<z+y \text { and } x+z<y+z
$$

Ordered Groups

Definition

An ordered group is a group G with a linear order $<$ such that for all $x, y, z \in G$,

$$
x<y \Rightarrow z+x<z+y \text { and } x+z<y+z
$$

Examples

Ordered Groups

- $(\mathbb{R},+)$
- $\left(\mathbb{R}_{>0}, \cdot\right)$

Ordered Groups

Definition

An ordered group is a group G with a linear order $<$ such that for all $x, y, z \in G$,

$$
x<y \Rightarrow z+x<z+y \text { and } x+z<y+z
$$

Examples

Ordered Groups

- $(\mathbb{R},+)$
- $\left(\mathbb{R}_{>0}, \cdot\right)$

Not an Ordered Group

- $(\mathbb{R} \backslash\{0\}, \cdot)$

Proof Sketch

Proof (lemma).

\triangleright Let $\{e\} \neq H \subset \mathcal{R}$ be a definable subgroup. Then $H=(-s, s)$ or $H=[-s, s]$.
Assume not, and say $e<r<h$ for $h \in H$ and $r \notin H$

$s=\infty$

Proof Sketch

Proof (lemma).

\triangleright Let $\{e\} \neq H \subset \mathcal{R}$ be a definable subgroup. Then $H=(-s, s)$ or $H=[-s, s]$.
Assume not, and say $e<r<h$ for $h \in H$ and $r \notin H$

$>s=\infty$

Proof (\mathcal{R} is Abelian).

$e \neq r \in \mathcal{R}$: consider $C(r)=\{s \in \mathcal{R} \mid s+r=r+s\}$, a definable subgroup of \mathcal{R}
Since $r \in C(r), C(r) \neq\{e\}$, so $C(R)=\mathcal{R}$ for all $r \in \mathcal{R}$

References

Saugata Basu，Richard Pollack，and Marie－Françoise Coste－Roy． Algorithms in Real Algebraic Geometry．eng．Vol．10．Algorithms and Computation in Mathematics．Berlin，Heidelberg：Springer Berlin／ Heidelberg，2006．ISBN： 3642069649.
䍰 Michel Coste．An introduction to o－minimal geometry．Istituti editoriali e poligrafici internazionali Pisa， 2000.
目 Lou Van den Dries et al．Tame topology and o－minimal structures． Vol．248．Cambridge university press， 1998.

