Vandermonde Varieties in Type B

Alison Rosenblum

Purdue University
Model Theory and Applications Seminar
February 2023

Motivation

The Setting

Vandermonde Varieties in Type B

Alison Rosenblum

Motivation
Type B Symmetry
Monotonicity
Consequences and Goals

References

The Setting

S semialgebraic subset of \mathcal{R}^{n}
S defined by a formula with atoms $f>0$ and $f=0$, where

$$
f \in \mathcal{P}=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Type B Symmetry
Monotonicity
Consequences and Goals

References

The Setting

S semialgebraic subset of \mathcal{R}^{n}
S defined by a formula with atoms $f>0$ and $f=0$, where

$$
f \in \mathcal{P}=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Motivation
Type B Symmetry
Monotonicity
Consequences and Goals

References

$$
H_{i}(S, \mathbb{Q})
$$

The Setting

S semialgebraic subset of \mathcal{R}^{n}
S defined by a formula with atoms $f>0$ and $f=0$, where

$$
f \in \mathcal{P}=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Motivation

Betti Numbers

$$
b_{i}(S)=\operatorname{dim}_{\mathbb{Q}} H_{i}(S, \mathbb{Q})
$$

The Setting

S semialgebraic subset of \mathcal{R}^{n}
S defined by a formula with atoms $f>0$ and $f=0$, where

$$
f \in \mathcal{P}=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Motivation

Betti Numbers

$$
b_{i}(S)=\operatorname{dim}_{\mathbb{Q}} H_{i}(S, \mathbb{Q})
$$

Central topics:

The Setting

S semialgebraic subset of \mathcal{R}^{n}
S defined by a formula with atoms $f>0$ and $f=0$, where

$$
f \in \mathcal{P}=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Betti Numbers

$$
b_{i}(S)=\operatorname{dim}_{\mathbb{Q}} H_{i}(S, \mathbb{Q})
$$

Central topics:

- Bounds on $b_{i}(S)$ e.g. in terms of n, s, i, $d=\max \left\{\operatorname{deg}\left(f_{j}\right)\right\}$
- singly exponential in n
- Algorithms computing $b_{i}(S)$
- current best complexity for all Betti numbers doubly exponential in n

Role of Symmetry

\mathfrak{S}_{n} acts on \mathcal{R}^{n} by interchanging variables

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

References

Role of Symmetry

\mathfrak{S}_{n} acts on \mathcal{R}^{n} by interchanging variables
S a \mathcal{P}-set for $\mathcal{P} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]^{\mathfrak{S}_{n}}$ symmetric polynomials

Motivation
Type B Symmetry
Monotonicity
Consequences and Goals

References

Role of Symmetry

\mathfrak{S}_{n} acts on \mathcal{R}^{n} by interchanging variables
S a \mathcal{P}-set for $\mathcal{P} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]^{\mathfrak{G}_{n}}$ symmetric polynomials

$$
x^{2}(x-1)^{2}(x-2)^{2}+y^{2}(y-1)^{2}(y-2)^{2}=0.1
$$

Symmetry and Betti numbers

- Bounds on Betti numbers still singly exponential in n

Symmetry and Betti numbers

- Bounds on Betti numbers still singly exponential in n
- Algorithms for $b_{i}\left(S / \mathfrak{S}_{n}\right)$ polynomial in n

Symmetry and Betti numbers

- Bounds on Betti numbers still singly exponential in n
- Algorithms for $b_{i}\left(S / \mathscr{S}_{n}\right)$ polynomial in n
- Algorithm for $b_{i}(S)$ with $0 \leq i \leq I$ (Basu, Riener; 2021) of complexity bounded by

$$
(s n d)^{2^{O(d+l)}}
$$

Symmetry and Betti numbers

- Bounds on Betti numbers still singly exponential in n
- Algorithms for $b_{i}\left(S / \mathfrak{S}_{n}\right)$ polynomial in n
- Algorithm for $b_{i}(S)$ with $0 \leq i \leq I$ (Basu, Riener; 2021) of complexity bounded by

$$
(s n d)^{2^{O(d+1)}}
$$

What about other finite reflection groups?

Vandermonde Varieties

See work of Arnold (1986), Givental (1987), and Kostov (1989)

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

References

Vandermonde Varieties

See work of Arnold (1986), Givental (1987), and Kostov (1989)
Weighted Newton power sums

$$
p_{A, \mathbf{w}, m}^{(n)}=w_{1} X_{1}^{m}+\cdots+w_{n} X_{n}^{m}
$$

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals
for $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{R}_{>0}^{n}$ weight vector

Vandermonde Varieties

See work of Arnold (1986), Givental (1987), and Kostov (1989)
Weighted Newton power sums

$$
p_{A, \mathbf{w}, m}^{(n)}=w_{1} X_{1}^{m}+\cdots+w_{n} X_{n}^{m}
$$

Motivation

Type B Symmetry

Consequences and Goals
for $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{R}_{>0}^{n}$ weight vector
Vandermonde variety

$$
V_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}=\left\{\mathbf{x} \in \mathcal{R} \mid p_{A, \mathbf{w}, 1}^{(n)}(\mathbf{x})=y_{1}, \ldots, p_{A, \mathbf{w}, d}^{(n)}(\mathbf{x})=y_{d}\right\}
$$

for $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in \mathcal{R}^{d}$

Vandermonde Varieties

See work of Arnold (1986), Givental (1987), and Kostov (1989)
Weighted Newton power sums

$$
p_{A, \mathbf{w}, m}^{(n)}=w_{1} X_{1}^{m}+\cdots+w_{n} X_{n}^{m}
$$

Motivation

Type B Symmetry
for $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{R}_{>0}^{n}$ weight vector
Vandermonde variety

$$
V_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}=\left\{\mathbf{x} \in \mathcal{R} \mid p_{A, \mathbf{w}, 1}^{(n)}(\mathbf{x})=y_{1}, \ldots, p_{A, \mathbf{w}, d}^{(n)}(\mathbf{x})=y_{d}\right\}
$$

for $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in \mathcal{R}^{d}$
Weyl chamber $\mathcal{W}_{A}^{(n)}=\left\{X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right\}$

Vandermonde Varieties

See work of Arnold (1986), Givental (1987), and Kostov (1989)
Weighted Newton power sums

$$
p_{A, \mathbf{w}, m}^{(n)}=w_{1} X_{1}^{m}+\cdots+w_{n} X_{n}^{m}
$$

Motivation

Type B Symmetry
for $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{R}_{>0}^{n}$ weight vector
Vandermonde variety

$$
V_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}=\left\{\mathbf{x} \in \mathcal{R} \mid p_{A, \mathbf{w}, 1}^{(n)}(\mathbf{x})=y_{1}, \ldots, p_{A, \mathbf{w}, d}^{(n)}(\mathbf{x})=y_{d}\right\}
$$

for $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in \mathcal{R}^{d}$
Weyl chamber $\mathcal{W}_{A}^{(n)}=\left\{X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right\}$
Study $Z_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}=V_{A, \mathbf{w}, d, \mathbf{y}}^{(n)} \cap \mathcal{W}_{A}^{(n)}$

Type B: New Results

Group $W_{B}(n)=(\mathbb{Z} / 2 \mathbb{Z})^{n} \rtimes \mathfrak{S}_{n}$ (acts on \mathcal{R}^{n} by interchanging variables and swapping signs).

Motivation
Type B Symmetry
Monotonicity
Consequences and Goals

References

Type B: New Results

Group $W_{B}(n)=(\mathbb{Z} / 2 \mathbb{Z})^{n} \rtimes \mathfrak{S}_{n}$ (acts on \mathcal{R}^{n} by interchanging variables and swapping signs).

Theorem

For every $\mathbf{w} \in \mathcal{R}_{>0}^{n}, 0 \leq d \leq n$, and $\mathbf{y} \in \mathcal{R}^{d}, Z_{B, \mathbf{w}, d, \mathbf{y}}^{(n)}$ is either empty, a point, or a semi-algebraic regular cell of dimension $n-d$.

Theorem

Let $d \geq 2, \mathbf{y} \in \mathcal{R}^{d}$. If $T \subset \operatorname{Cox}_{B}(n)$, then

$$
H^{i}\left(Z_{B, d, \mathbf{y}}^{(n)}, Z_{B, d, \mathbf{y}}^{(n)} \cap\left(\bigcup_{s \in T} \mathcal{W}_{B, s}^{(n)}\right)\right)=0
$$

for all (i, T) satisfying either $i \leq \operatorname{card}(T)-2 d$ or $i \geq \operatorname{card}(T)+1$

Motivation

Type B Symmetry
Monotonicity

Type B Symmetry

Lie Types

Motivation

Type B Symmetry
From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

Monotonicity
Consequences and Goals

References

Lie Types

Motivation

Type B Symmetry
From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

- Type A_{n} (\leftrightarrow symmetric group)

Lie Types

From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

- Type A_{n} (\leftrightarrow symmetric group)
- Type B_{n} (\leftrightarrow signed permutations)

Lie Types

From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

- Type A_{n} (\leftrightarrow symmetric group)
- Type B_{n} (\leftrightarrow signed permutations)
- (Type C_{n})

Lie Types

From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

- Type A_{n} (\leftrightarrow symmetric group)
- Type B_{n} (\leftrightarrow signed permutations)
- (Type C_{n})
- Type D_{n}

Lie Types

From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

- Type A_{n} (\leftrightarrow symmetric group)
- Type B_{n} (\leftrightarrow signed permutations)
- (Type C_{n})
- Type D_{n}
- Dihedral groups

Lie Types

From classification of finite reflection groups/ finite irreducible Coxeter systems/ irreducible root systems (representation theory of Lie groups and Lie algebras)

- Type A_{n} (\leftrightarrow symmetric group)
- Type B_{n} (\leftrightarrow signed permutations)
- (Type C_{n})
- Type D_{n}
- Dihedral groups
- Exceptional types (e.g. $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$)

Coxeter Systems

Alison Rosenblum

Motivation

Type B Symmetry
Group W together with set of generators satisfying certain properties (e.g. $s^{2}=e$)

Coxeter Systems

Motivation

Type B Symmetry
Group W together with set of generators satisfying certain properties (e.g. $s^{2}=e$)

Monotonicity
Consequences and
$W_{A}=\mathfrak{S}_{n}$
Generators $\operatorname{Cox}_{A}(n)=\left\{s_{1}=(12), \ldots, s_{n-1}=(n-1 n)\right\}$ $s_{j} \leftrightarrow$ reflection through $X_{j}=X_{j+1}$

Coxeter Systems

Group W together with set of generators satisfying certain properties (e.g. $s^{2}=e$)

$$
\begin{aligned}
& W_{A}=\mathfrak{S}_{n} \\
& \quad \text { Generators } \operatorname{Cox}_{A}(n)=\left\{s_{1}=(12), \ldots, s_{n-1}=(n-1 n)\right\} \\
& s_{j} \leftrightarrow \text { reflection through } X_{j}=X_{j+1} \\
& W_{B}=(\mathbb{Z} / 2 \mathbb{Z})^{n} \rtimes \mathfrak{S}_{n} \\
& \quad \text { Generators } \operatorname{Cox}_{B}(n)=\left\{s_{0}\right\} \cup \operatorname{Cox}_{A}(n) \\
& s_{0} \leftrightarrow \text { reflection through } X_{1}=0
\end{aligned}
$$

Weyl Chamber

Fundamental region of W

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

References

Weyl Chamber

Fundamental region of W

Type A:

$$
\mathcal{W}_{A}^{(n)}=\left\{X_{1} \leq \cdots \leq X_{n}\right\}
$$

Weyl Chamber

Fundamental region of W

Type A:

$$
\mathcal{W}_{A}^{(n)}=\left\{X_{1} \leq \cdots \leq X_{n}\right\}
$$

Type B:

$$
\mathcal{W}_{B}^{(n)}\left\{0 \leq X_{1} \leq \cdots \leq X_{n}\right\}
$$

Figure: $\mathcal{W}_{B}^{(n)}$ and walls

Weyl Chamber

Fundamental region of W

Type A:

$$
\mathcal{W}_{A}^{(n)}=\left\{X_{1} \leq \cdots \leq X_{n}\right\}
$$

Type B :

$$
\mathcal{W}_{B}^{(n)}\left\{0 \leq X_{1} \leq \cdots \leq X_{n}\right\}
$$

Figure: $\mathcal{W}_{B}^{(n)}$ and walls

Walls $\mathcal{W}_{s_{j}}^{(n)}=\mathcal{W}^{(n)} \cap\left\{X_{j}=X_{j+1}\right\}$
For $T \subset \operatorname{Cox}(n)$,

$$
\mathcal{W}_{T}^{(n)}=\bigcap_{s \in T} \mathcal{W}_{s}^{(n)} \quad \mathcal{W}^{(n, T)}=\bigcup_{s \in T} \mathcal{W}_{s}^{(n)}
$$

Vandermonde Varieties

$V_{A, d, y}^{(n)}$ intersection of level sets of first d generators of invariant ring of \mathfrak{S}_{n}

Type A

$$
p_{A, m}^{(n)}=X_{1}^{m}+\cdots+X_{n}^{m}
$$

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

References

Vandermonde Varieties

$V_{A, d, y}^{(n)}$ intersection of level sets of first d generators of invariant ring of \mathfrak{S}_{n}

Type A

$$
p_{A, m}^{(n)}=X_{1}^{m}+\cdots+X_{n}^{m}
$$

Motivation

Type B Symmetry
Monotonicity
Consequences and

Type B

$$
p_{B, m}^{(n)}=X_{1}^{2 m}+\cdots+X_{n}^{2 m}
$$

Vandermonde Varieties

$V_{A, d, y}^{(n)}$ intersection of level sets of first d generators of invariant ring of \mathfrak{S}_{n}

Type A

$$
p_{A, m}^{(n)}=X_{1}^{m}+\cdots+X_{n}^{m}
$$

Motivation

Type B Symmetry

Type B

$$
p_{B, m}^{(n)}=X_{1}^{2 m}+\cdots+X_{n}^{2 m}
$$

Weighted Vandermonde varieties: $\mathbf{w} \in \mathcal{R}_{>0}^{n}$

$$
\begin{gathered}
p_{B, \mathbf{w}, m}^{(n)}=w_{1} X_{1}^{2 m}+\cdots+w_{n} X_{n}^{2 m} \\
V_{B, \mathbf{w}, d, \mathbf{y}}^{(n)}=\left\{p_{B, \mathbf{w}, 1}^{(n)}=y_{1}, \ldots, p_{B, \mathbf{w}, d}^{(n)}=y_{d}\right\}
\end{gathered}
$$

Some Vandermonde Varieties

Motivation

Type B Symmetry

Figure: $V_{B, 2, \mathrm{y}}^{(2)}$ for $\mathbf{y}=(1,0.8)$

Figure: $V_{B, \mathbf{w}, 2, \mathbf{y}}^{(2)}$ for $\mathbf{w}=(2,1)$, $\mathbf{y}=(1,1)$

Some Vandermonde Varieties

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

Figure: $V_{B, 3, y}^{(3)}$ for $\mathbf{y}=(1,0.5,0.27)$

Motivation

Type B Symmetry
Monotonicity
Consequences and
Monotonicity

Goals
References

Monotone Sets and Maps

Assume sets and functions definable in some fixed o-minimal structure over \mathbb{R}

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

References

Monotone Sets and Maps

Assume sets and functions definable in some fixed o-minimal structure over \mathbb{R}

Coordinate Cone in \mathbb{R}^{n}

$$
C=\bigcap_{j \in A \subset\{1, \ldots, n\}}\left\{X_{j} \sigma_{j} c_{j}\right\} \text { where } \sigma_{j} \in\{<,=,>\} \text { and } c_{j} \in \mathbb{R}
$$

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

Monotone Sets and Maps

Assume sets and functions definable in some fixed o-minimal structure over \mathbb{R}

Coordinate Cone in \mathbb{R}^{n}

$$
C=\bigcap_{j \in A \subset\{1, \ldots, n\}}\left\{X_{j} \sigma_{j} c_{j}\right\} \text { where } \sigma_{j} \in\{<,=,>\} \text { and } c_{j} \in \mathbb{R}
$$

Definition

An open bounded set $X \subset \mathbb{R}^{n}$ is semi-monotone if $X \cap C$ is connected for every coordinate cone C in \mathbb{R}^{n} (can also define monotone maps)

Monotone Sets and Maps

Assume sets and functions definable in some fixed o-minimal structure over \mathbb{R}

Coordinate Cone in \mathbb{R}^{n}

$$
C=\bigcap_{j \in A \subset\{1, \ldots, n\}}\left\{X_{j} \sigma_{j} c_{j}\right\} \text { where } \sigma_{j} \in\{<,=,>\} \text { and } c_{j} \in \mathbb{R}
$$

Definition

An open bounded set $X \subset \mathbb{R}^{n}$ is semi-monotone if $X \cap C$ is connected for every coordinate cone C in \mathbb{R}^{n} (can also define monotone maps)

Theorem (Basu, Gabrielov, Vorobjov; 2013)
If X is monotone, then X is a regular cell, i.e. (\bar{X}, X) is homeomorphic as a pair to $\left(\bar{B}^{k}, B^{k}\right)$

Monotonicity of Vandermonde Varieties

Alison Rosenblum

Motivation

Lemma (Basu, Riener; 2021)
$Z_{A, \mathbf{w}, d, y}^{(n)}$ is either empty, a single point, or the closure of a monotone cell of dimension $n-d$.

Type B Symmetry

Monotonicity
Consequences and Goals

References

Monotonicity of Vandermonde Varieties

Motivation

Lemma (Basu, Riener; 2021)
$Z_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}$ is either empty, a single point, or the closure of a monotone cell of dimension $n-d$.

Note $Z_{B, \mathbf{w}, d, \mathbf{y}}^{(n)}$ is homeomorphic to $Z_{A, \mathbf{w}, d, \mathbf{y}}^{(n)} \cap \mathcal{R}_{\geq 0}^{n}$

Monotonicity of Vandermonde Varieties

Lemma (Basu, Riener; 2021)

$Z_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}$ is either empty, a single point, or the closure of a monotone cell of dimension $n-d$.

Note $Z_{B, \mathbf{w}, d, \mathbf{y}}^{(n)}$ is homeomorphic to $Z_{A, \mathbf{w}, d, \mathbf{y}}^{(n)} \cap \mathcal{R}_{\geq 0}^{n}$
$\mathcal{R}_{>0}^{n}$ coordinate cone in \mathcal{R}^{n}, intersection of a monotone set with a coordinate cone is monotone

Monotonicity of Vandermonde Varieties

Lemma (Basu, Riener; 2021)

$Z_{A, \mathbf{w}, d, \mathbf{y}}^{(n)}$ is either empty, a single point, or the closure of a monotone cell of dimension $n-d$.

Note $Z_{B, \mathbf{w}, d, y}^{(n)}$ is homeomorphic to $Z_{A, \mathbf{w}, d, y}^{(n)} \cap \mathcal{R}_{\geq 0}^{n}$
$\mathcal{R}_{>0}^{n}$ coordinate cone in \mathcal{R}^{n}, intersection of a monotone set with a coordinate cone is monotone
Lemma
$Z_{B, w, d, y}^{(n)}$ is either empty, a single point, or the
s.a.-homeomorphic image of the closure of a monotone cell of dimension $n-d$.

Motivation

Type B Symmetry
Monotonicity
Consequences and

Consequences and Goals

Consequences of Regularity

Alison Rosenblum

Motivation

Type B Symmetry
Notice: for $T \subset \operatorname{Cox}_{B}(n), V_{B, d, y}^{(n)} \cap \mathcal{W}_{B, T}^{(n)}$ is again a weighted Vandermonde variety

Monotonicity
Consequences and Goals

References

Consequences of Regularity

Alison Rosenblum

Motivation

Type B Symmetry
Notice: for $T \subset \operatorname{Cox}_{B}(n), V_{B, d, y}^{(n)} \cap \mathcal{W}_{B, T}^{(n)}$ is again a weighted Vandermonde variety

Monotonicity

Consequences and Goals
$\Rightarrow Z_{B, d, y}^{(n)}$ a regular cell complex

Consequences of Regularity

Notice: for $T \subset \operatorname{Cox}_{B}(n), V_{B, d, y}^{(n)} \cap \mathcal{W}_{B, T}^{(n)}$ is again a weighted Vandermonde variety
$\Rightarrow Z_{B, d, y}^{(n)}$ a regular cell complex
\Rightarrow vanishing of various cohomologies of certain sets of the form $V_{B, d, \mathbf{y}}^{(n)} \cap \mathcal{W}_{B}^{(n, T)}$ for $T \subset \operatorname{Cox}_{B}(n)$

Decomposition of Homology

Motivation

S is G-symmetric: induced action of G on $H_{*}(S), H^{*}(S)$

Type B Symmetry

Monotonicity
Consequences and Goals

References

Decomposition of Homology

S is G-symmetric: induced action of G on $H_{*}(S), H^{*}(S)$
Assume $d \geq 2$

Know $H^{i}\left(Z_{B, d, y}^{(n)}, Z_{B, d, y}^{(n)} \cap \mathcal{W}_{B}^{(n, T)}\right)=0$ for all (i, T) satisfying either $i \leq \operatorname{card}(T)-2 d$ or $i \geq \operatorname{card}(T)+1$

Decomposition of Homology

S is G-symmetric: induced action of G on $H_{*}(S), H^{*}(S)$
Assume $d \geq 2$

$$
\begin{aligned}
& H_{*}\left(V_{B, d, y}^{(n)}\right) \simeq W_{W_{B}(n)} \\
& \bigoplus_{T \subset \operatorname{Cox}_{B}(n)} H_{*}\left(Z_{B, d, \mathbf{y}}^{(n)}, Z_{B, d, y}^{(n)} \cap \mathcal{W}_{B}^{(n, T)}\right) \otimes \Psi_{B, T}^{(n)}
\end{aligned}
$$

where $\Psi_{B, T}^{(n)}$ is the Solomon module in type B_{n} indexed by T
Know $H^{i}\left(Z_{B, d, y}^{(n)}, Z_{B, d, y}^{(n)} \cap \mathcal{W}_{B}^{(n, T)}\right)=0$ for all (i, T)
satisfying either $i \leq \operatorname{card}(T)-2 d$ or $i \geq \operatorname{card}(T)+1$

Next Steps

In Type $A: S$ a \mathcal{P}-set for $\mathcal{P} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]_{\leq d}^{G_{n}}$

Motivation

Type B Symmetry
Monotonicity
Consequences and Goals

References

Next Steps

Alison Rosenblum

In Type A: S a \mathcal{P}-set for $\mathcal{P} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]_{\leq d}^{\mathfrak{G}_{n}}$

$$
H^{i}(S) \cong_{\mathcal{S}_{n}} \bigoplus_{\lambda \vdash n} m_{i, \lambda}(S) \mathbb{S}^{\lambda}
$$

(λ a partition of n, S^{λ} Specht module associated to λ, $m_{i, \lambda}(S)$ multiplicity of S^{λ} in $H^{i}(S)$)

Next Steps

In Type A: S a \mathcal{P}-set for $\mathcal{P} \subset \mathcal{R}\left[X_{1}, \ldots, X_{n}\right]_{\leq d}^{\mathfrak{G}_{n}}$

$$
H^{i}(S) \cong_{\mathcal{E}_{n}} \bigoplus_{\lambda \vdash n} m_{i, \lambda}(S) \mathbb{S}^{\lambda}
$$

(λ a partition of n, S^{λ} Specht module associated to λ, $m_{i, \lambda}(S)$ multiplicity of S^{λ} in $H^{i}(S)$)
Theorem (Basu, Riener; 2021)
For $d \geq 2, m_{i, \lambda}\left(V_{B, d, y}^{(n)}\right)=0$ if either $i \leq \operatorname{length}(\lambda)-2 d+1$ or $i \geq n-\operatorname{length}\left({ }^{t} \lambda\right)+1$

Theorem (Basu, Riener; 2021)

For $d \geq 2, m_{i, \lambda}(S)=0$ if either $i \leq$ length $(\lambda)-2 d+1$ or $i \geq n-\operatorname{length}\left({ }^{t} \lambda\right)+d+1$

References I

[1] Saugata Basu and Cordian Riener. "Vandermonde varieties, mirrored spaces, and the cohomology of symmetric semi-algebraic sets". In: Foundations of Computational Mathematics (2021), pp. 1-68.
[2] Vladimir Igorevich Arnol'd. "Hyperbolic polynomials and Vandermonde mappings". In: Funktsional'nyi Analiz i ego Prilozheniya 20.2 (1986), pp. 52-53.
[3] Aleksandr Borisovich Givental. "Moments of random variables and the equivariant Morse lemma". In: Russian Mathematical Surveys 42.2 (1987), pp. 275-276.
[4] VP Kostov. "On the geometric properties of Vandermonde's mapping and on the problem of moments". In: Proceedings of the Royal Society of Edinburgh Section A: Mathematics 112.3-4 (1989), pp. 203-211.

References II

Motivation

Type B Symmetry
[6] Larry C Grove and Clark T Benson. Finite reflection groups. Vol. 99. Springer Science \& Business Media, 1996.
[7] Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Monotone functions and maps". In: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 107.1 (2013), pp. 5-33.

