Compactness of the set of iso-resonant potentials for Schrödinger operators in low dimensions

Peter D. Hislop
Mathematics Department
University of Kentucky
Lexington, KY 40506-0027

In joint work with R. Wolf, we prove compactness of a restricted set of real-valued, compactly supported potentials V for which the corresponding Schrödinger operators H_V have the same resonances, including multiplicities. More specifically, let $B_R(0)$ be the ball of radius $R > 0$ about the origin in \mathbb{R}^d, for $d = 1$ or $d = 3$. For any real-valued potential $V_0 \in C_0^\infty(B_R(0))$, let $I_R(V_0)$ be the set of real-valued potentials in $C_0^\infty(B_R(0))$ so that the corresponding Schrödinger operators have the same resonances, including multiplicities, as H_{V_0}. We prove that the iso-resonant set $I_R(V_0)$ is a compact subset of $C_0^\infty(B_R(0))$ in the C^∞-topology. Extensions to sets of less regular potentials in various Sobolev spaces are also obtained.