Compactness of the set of iso-resonant potentials for Schrödinger operators in low dimensions

Peter D. Hislop Mathematics Department University of Kentucky Lexington, KY 40506-0027

In joint work with R. Wolf, we prove compactness of a restricted set of real-valued, compactly supported potentials V for which the corresponding Schrödinger operators H_V have the same resonances, including multiplicities. More specifically, let $B_R(0)$ be the ball of radius R > 0 about the origin in R^d , for d = 1 or d = 3. For any real-valued potential $V_0 \in C_0^{\infty}(B_R(0))$, let $\mathcal{I}_R(V_0)$ be the set of real-valued potentials in $C_0^{\infty}(B_R(0))$ so that the corresponding Schrödinger operators have the same resonances, including multiplicities, as H_{V_0} . We prove that the iso-resonant set $\mathcal{I}_R(V_0)$ is a compact subset of $C_0^{\infty}(B_R(0))$ in the C^{∞} -topology. Extensions to sets of less regular potentials in various Sobolev spaces are also obtained.