Spectrally unstable domains

Gerardo A. Mendoza

Let H be a separable Hilbert space, $A_c : \mathcal{D}_c \subset H \to H$ a densely defined unbounded operator, bounded from below, let \mathcal{D}_{\min} be the domain of the closure of A_c and \mathcal{D}_{\max} that of the adjoint. Assume that \mathcal{D}_{\max} with the graph norm is compactly contained in H and that \mathcal{D}_{\min} has finite positive codimension in \mathcal{D}_{\max} . Then the set of domains of selfadjoint extensions of A_c has the structure of a finitedimensional manifold \mathfrak{SA} and the spectrum of each of its selfadjoint extensions is bounded from below. If ζ is strictly below the spectrum of A with a given domain $\mathcal{D}_0 \in \mathfrak{SA}$, then ζ is not in the spectrum of A with domain $\mathcal{D} \in \mathfrak{SA}$ near \mathcal{D}_0 . But \mathfrak{SA} contains elements \mathcal{D}_0 with the property that for every neighborhood U of \mathcal{D}_0 and every $\zeta \in \mathbb{R}$ there is $\mathcal{D} \in U$ such that $\operatorname{spec}(A_{\mathcal{D}}) \cap (-\infty, \zeta) \neq \emptyset$. We characterize these "spectrally unstable" domains as being those satisfying a nontrivial relation with the domain of the Friedrichs extension of A_c .

This is a situation that arises in the context of elliptic semibounded cone operators on compact manifolds with conical singularities.