
A Crash Course in Complexity Theory with a view
towards ustcon ∈ L

Anurag Sahay

University of Rochester

asahay@ur.rochester.edu

25th February, 2020

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 1 / 24

Overview of the Talk

1 Introduction
What is Computation?

2 Formalizing Efficient Computation
Time Complexity: P
Space Complexity: L
The Relationship between Time and Space Complexity

3 Reingold’s Theorem: ustcon ∈ L

4 Nondeterminism in Space Complexity

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 2 / 24

References

Sanjeev Arora and Boaz Barak.
Computational complexity: a modern approach.
Cambridge University Press, 2009.

Omer Reingold.
Undirected connectivity in log-space.
Journal of the ACM (JACM), 55(4):1–24, 2008.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 3 / 24

Decision Problems

We will restrict ourselves to decision problems for this talk. A decision
problem is a function f : {0, 1}∗ → {0, 1}.

Equivalently, a decision problem is a subset L ⊆ {0, 1}∗.

When asking yes-or-no questions about countable collections of discrete
objects (like graphs, integers, binary strings) it is usually possible to
encode the question as a decision problem. For a toy example, consider
the parity problem: n ∈ N, is the number of 1 in the binary expansion of
n odd?

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 4 / 24

Decision Problems

We will restrict ourselves to decision problems for this talk. A decision
problem is a function f : {0, 1}∗ → {0, 1}.

Equivalently, a decision problem is a subset L ⊆ {0, 1}∗.

When asking yes-or-no questions about countable collections of discrete
objects (like graphs, integers, binary strings) it is usually possible to
encode the question as a decision problem. For a toy example, consider
the parity problem: n ∈ N, is the number of 1 in the binary expansion of
n odd?

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 4 / 24

Turing Machine

Definition

A deterministic k-tape Turing machine M is a tuple (Q, Γ, δ) where

Q is a finite set of states.

Γ is a finite set of symbols, called an alphabet. These are the symbols
that can be written on any of the tapes of the Turing machine.

δ : Q × Γk → Q × Γk−1 × {l,r, s}k is called the transition function.

There are two distinguished states qstart, qhalt ∈ Q. qhalt has the
property that δ(qhalt, ·) does not change any tapes, or move any of
the heads.

There is a distinguished symbol � ∈ Γ, representing a blank space.

In particular, we can choose Γ = {0, 1,�}, and set k = 3. As long as Γ
has at least two non-blank elements, it doesn’t practically change anything
we will discuss.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 5 / 24

What is an Efficient Computation?

There are two basic resources a computer uses: time and space.

Informally, we define these resources as follows:

Definition

For a given deterministic Turing machine M, and a given input
x ∈ {0, 1}∗, the time TM(x) on that input is the number of transitions M
makes on input x before it halts.

The space SM(x) is the largest distance travelled by the head of any work
tape before M halts on input x . Further, for n ∈ N,

TM(n) = max
|x |≤n

TM(x)

SM(n) = max
|x |≤n

SM(x)

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 6 / 24

What is an Efficient Computation?

There are two basic resources a computer uses: time and space.

Informally, we define these resources as follows:

Definition

For a given deterministic Turing machine M, and a given input
x ∈ {0, 1}∗, the time TM(x) on that input is the number of transitions M
makes on input x before it halts.

The space SM(x) is the largest distance travelled by the head of any work
tape before M halts on input x . Further, for n ∈ N,

TM(n) = max
|x |≤n

TM(x)

SM(n) = max
|x |≤n

SM(x)

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 6 / 24

What is an Efficient Computation?

There are two basic resources a computer uses: time and space.

Informally, we define these resources as follows:

Definition

For a given deterministic Turing machine M, and a given input
x ∈ {0, 1}∗, the time TM(x) on that input is the number of transitions M
makes on input x before it halts.

The space SM(x) is the largest distance travelled by the head of any work
tape before M halts on input x .

Further, for n ∈ N,

TM(n) = max
|x |≤n

TM(x)

SM(n) = max
|x |≤n

SM(x)

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 6 / 24

What is an Efficient Computation?

There are two basic resources a computer uses: time and space.

Informally, we define these resources as follows:

Definition

For a given deterministic Turing machine M, and a given input
x ∈ {0, 1}∗, the time TM(x) on that input is the number of transitions M
makes on input x before it halts.

The space SM(x) is the largest distance travelled by the head of any work
tape before M halts on input x . Further, for n ∈ N,

TM(n) = max
|x |≤n

TM(x)

SM(n) = max
|x |≤n

SM(x)

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 6 / 24

What is an Efficient Computation?

This leads us to the following definitions:

Definition (DTIME)

For L ⊆ {0, 1}∗, we say L ∈ DTIME(f (n)), if there is a Turing machine M
that decides L such that

TM(n) = O(f (n))

Definition (DSPACE)

Similarly, we say L ∈ DSPACE(f (n)), if there is a Turing machine M that
decides L such that

SM(n) = O(f (n))

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 7 / 24

What is an Efficient Computation?

This leads us to the following definitions:

Definition (DTIME)

For L ⊆ {0, 1}∗, we say L ∈ DTIME(f (n)), if there is a Turing machine M
that decides L such that

TM(n) = O(f (n))

Definition (DSPACE)

Similarly, we say L ∈ DSPACE(f (n)), if there is a Turing machine M that
decides L such that

SM(n) = O(f (n))

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 7 / 24

Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.
If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.
If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 8 / 24

Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.
If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.
If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 8 / 24

Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.

If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.
If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 8 / 24

Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.
If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.

If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 8 / 24

Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.
If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.
If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 8 / 24

Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.
If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.
If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 8 / 24

What is a Time Efficient Computation?

Returning to the formalizing efficient computability. Specificially, for
time-efficiency,:

Definition (Polynomial Time)

P =
⋃
k≥1

DTIME(nk)

Why P? Isn’t an algorithm with time complexity O(nlog log log n) superior to
one with complexity O(n1000)? Why not define it as DTIME(n2)?

Extended Church-Turing hypothesis: on all typical models of
computations, the notion of P is invariant under simulation.

P is closed under composition (calling polynomially many subroutines
each taking polynomial time will not increase the running time
beyond polynomial).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 9 / 24

What is a Time Efficient Computation?

Returning to the formalizing efficient computability. Specificially, for
time-efficiency,:

Definition (Polynomial Time)

P =
⋃
k≥1

DTIME(nk)

Why P? Isn’t an algorithm with time complexity O(nlog log log n) superior to
one with complexity O(n1000)? Why not define it as DTIME(n2)?

Extended Church-Turing hypothesis: on all typical models of
computations, the notion of P is invariant under simulation.

P is closed under composition (calling polynomially many subroutines
each taking polynomial time will not increase the running time
beyond polynomial).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 9 / 24

What is a Time Efficient Computation?

Returning to the formalizing efficient computability. Specificially, for
time-efficiency,:

Definition (Polynomial Time)

P =
⋃
k≥1

DTIME(nk)

Why P? Isn’t an algorithm with time complexity O(nlog log log n) superior to
one with complexity O(n1000)? Why not define it as DTIME(n2)?

Extended Church-Turing hypothesis: on all typical models of
computations, the notion of P is invariant under simulation.

P is closed under composition (calling polynomially many subroutines
each taking polynomial time will not increase the running time
beyond polynomial).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 9 / 24

Another Time Complexity Class

We have the following definition:

Definition (Exponential Time)

EXP =
⋃
k≥1

DTIME(2n
k
)

Clearly P ⊆ EXP. In fact, it is known that P (EXP.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 10 / 24

Another Time Complexity Class

We have the following definition:

Definition (Exponential Time)

EXP =
⋃
k≥1

DTIME(2n
k
)

Clearly P ⊆ EXP. In fact, it is known that P (EXP.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 10 / 24

What is the space-efficiency analogue of P?

We now want a notion of space-efficient computation. A naive idea would
be to mimic the previous definition, to get

Definition (Polynomial Space)

PSPACE =
⋃
k≥1

DSPACE(nk)

However, here’s a heuristic for why this is not a very efficient notion of
space complexity: which way does the inclusion between P and PSPACE
go?

It is known that P ⊆ PSPACE , and it is actually expected that
P (PSPACE (for example, P 6= NP would imply this).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 11 / 24

What is the space-efficiency analogue of P?

We now want a notion of space-efficient computation. A naive idea would
be to mimic the previous definition, to get

Definition (Polynomial Space)

PSPACE =
⋃
k≥1

DSPACE(nk)

However, here’s a heuristic for why this is not a very efficient notion of
space complexity: which way does the inclusion between P and PSPACE
go?

It is known that P ⊆ PSPACE , and it is actually expected that
P (PSPACE (for example, P 6= NP would imply this).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 11 / 24

What is the space-efficiency analogue of P?

We now want a notion of space-efficient computation. A naive idea would
be to mimic the previous definition, to get

Definition (Polynomial Space)

PSPACE =
⋃
k≥1

DSPACE(nk)

However, here’s a heuristic for why this is not a very efficient notion of
space complexity: which way does the inclusion between P and PSPACE
go?

It is known that P ⊆ PSPACE , and it is actually expected that
P (PSPACE (for example, P 6= NP would imply this).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 11 / 24

What is the space-efficiency analogue of P?

The analogue for P is space-complexity is the following:

Definition (LogSpace)

L = DSPACE(log n)

Note that clearly L ⊆ PSPACE . In fact, L ⊆ P, as we will show soon.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 12 / 24

What is the space-efficiency analogue of P?

The analogue for P is space-complexity is the following:

Definition (LogSpace)

L = DSPACE(log n)

Note that clearly L ⊆ PSPACE . In fact, L ⊆ P, as we will show soon.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 12 / 24

How do these notions relate?

We have the following theorem:

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ DTIME(2O(f (n)))

Proof.

The first inclusion is trivial: note that in time t, no head of the TM could
have used more space than t.
For the second, suppose that M uses s space on some input x . We define
the configuration graph GM,x to be the directed graph whose vertices are
configurations, and v → u ⇐⇒ δ(v) = u. Then, there are at most
2OM(s) many configurations. Note GM,x must be a directed acyclic graph
(otherwise there would be infinite loops), and hence the time taken is at
most the largest walk in the graph, and hence � 2OM(s).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 13 / 24

How do these notions relate?

We have the following theorem:

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ DTIME(2O(f (n)))

Proof.

The first inclusion is trivial: note that in time t, no head of the TM could
have used more space than t.

For the second, suppose that M uses s space on some input x . We define
the configuration graph GM,x to be the directed graph whose vertices are
configurations, and v → u ⇐⇒ δ(v) = u. Then, there are at most
2OM(s) many configurations. Note GM,x must be a directed acyclic graph
(otherwise there would be infinite loops), and hence the time taken is at
most the largest walk in the graph, and hence � 2OM(s).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 13 / 24

How do these notions relate?

We have the following theorem:

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ DTIME(2O(f (n)))

Proof.

The first inclusion is trivial: note that in time t, no head of the TM could
have used more space than t.
For the second, suppose that M uses s space on some input x . We define
the configuration graph GM,x to be the directed graph whose vertices are
configurations, and v → u ⇐⇒ δ(v) = u. Then, there are at most
2OM(s) many configurations. Note GM,x must be a directed acyclic graph
(otherwise there would be infinite loops), and hence the time taken is at
most the largest walk in the graph, and hence � 2OM(s).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 13 / 24

How do these notions relate?

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ DTIME(2O(f (n)))

As an immediate corrolary to the above theorem, we see that
L ⊆ P ⊆ PSPACE ⊆ EXP, some of which we claimed earlier.

None of these are known to be strict (though it is known that
L (PSPACE and P (EXP).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 14 / 24

The decision problem ustcon

We now describe ustcon.

Definition (Undirected st-connectivity)

ustcon is the following decision problem:

Input: an undirected graph G = (V ,E), and two vertices s, t ∈ V

Output: 1 if s t in G , and 0 otherwise.

Note that this can be encoded in a way such that the input size is a fixed
polynomial in |V |, so in particular, we can replace the size of the input
with |V |= n in our estimates.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 15 / 24

The decision problem ustcon

We now describe ustcon.

Definition (Undirected st-connectivity)

ustcon is the following decision problem:

Input: an undirected graph G = (V ,E), and two vertices s, t ∈ V

Output: 1 if s t in G , and 0 otherwise.

Note that this can be encoded in a way such that the input size is a fixed
polynomial in |V |, so in particular, we can replace the size of the input
with |V |= n in our estimates.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 15 / 24

Reingold’s Theorem

This brings us to the goal of the next talk:

Theorem (Reingold, 2005)

ustcon ∈ L

We will prove this next time. For now, we provide some motivation for
why this result is possibly surprising.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 16 / 24

Nondeterministic Turing Machine

Before we motivate the importance of Reingold’s theorem, we consider an
augmented model of computation, called the nondeterministic Turing
machine.

Definition

A nondeterministic Turing machine N is a tuple (Q, Γ, δ) where the
definition is the same as that of a Turing machine, except that instead of
being a single-valued function, δ is a multi-valued function (i.e., it is a
relation). We say that an NTM N accepts precisely when at least one of
the paths accepts, and it rejects when all paths reject.

Clearly, every deterministic Turing machine is a nondeterministic one.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 17 / 24

Nondeterministic Turing Machine

Before we motivate the importance of Reingold’s theorem, we consider an
augmented model of computation, called the nondeterministic Turing
machine.

Definition

A nondeterministic Turing machine N is a tuple (Q, Γ, δ) where the
definition is the same as that of a Turing machine, except that instead of
being a single-valued function, δ is a multi-valued function (i.e., it is a
relation). We say that an NTM N accepts precisely when at least one of
the paths accepts, and it rejects when all paths reject.

Clearly, every deterministic Turing machine is a nondeterministic one.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 17 / 24

Nondeterministic Complexity

All of the complexity classes we defined earlier generalize:

Definition (NTIME)

For L ⊆ {0, 1}∗,L ∈ NTIME(f (n)), if there is a nondeterministic Turing
machine N that decides L such that

TN(n) = O(f (n))

Definition (NSPACE)

L ∈ NSPACE(f (n)), if there is a nondeterministic Turing machine N that
decides L such that

SN(n) = O(f (n))

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 18 / 24

Nondeterministic Complexity

Definition (Nondeterministic Polynomial Time)

NP =
⋃
k≥1

NTIME(nk)

Definition (Nondeterministic LogSpace)

NL = NSPACE(log n)

Big open problem: does adding nondeterminism to Turing machines
change efficiently computable classes? Clearly DTIME ⊆ NTIME and
DSPACE ⊆ NSPACE. Is P = NP? Is L = NL? Is EXP = NEXP?

All open! (modulo some interrelations, like EXP = NEXP =⇒ P = NP).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 19 / 24

Nondeterministic Complexity

Definition (Nondeterministic Polynomial Time)

NP =
⋃
k≥1

NTIME(nk)

Definition (Nondeterministic LogSpace)

NL = NSPACE(log n)

Big open problem: does adding nondeterminism to Turing machines
change efficiently computable classes? Clearly DTIME ⊆ NTIME and
DSPACE ⊆ NSPACE. Is P = NP? Is L = NL? Is EXP = NEXP?

All open! (modulo some interrelations, like EXP = NEXP =⇒ P = NP).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 19 / 24

Nondeterministic Complexity

Definition (Nondeterministic Polynomial Time)

NP =
⋃
k≥1

NTIME(nk)

Definition (Nondeterministic LogSpace)

NL = NSPACE(log n)

Big open problem: does adding nondeterminism to Turing machines
change efficiently computable classes? Clearly DTIME ⊆ NTIME and
DSPACE ⊆ NSPACE. Is P = NP? Is L = NL? Is EXP = NEXP?

All open! (modulo some interrelations, like EXP = NEXP =⇒ P = NP).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 19 / 24

How does nondeterministic space relate to time?

In fact, a more careful proof of the theorem relating deterministic space to
deterministic time tells us that

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ NSPACE(f (n)) ⊆ DTIME(2O(f (n)))

In particular, this has a corrolary that NL ⊆ P.

We also have the following relationship between the various logarithmic
space classes:

Theorem

L ⊆ SL ⊆ RL ⊆ NL ⊆ L2

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 20 / 24

How does nondeterministic space relate to time?

In fact, a more careful proof of the theorem relating deterministic space to
deterministic time tells us that

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ NSPACE(f (n)) ⊆ DTIME(2O(f (n)))

In particular, this has a corrolary that NL ⊆ P.

We also have the following relationship between the various logarithmic
space classes:

Theorem

L ⊆ SL ⊆ RL ⊆ NL ⊆ L2

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 20 / 24

Reductions and Completeness

We say that

L1 ≤P L2

that is L1 is Karp reducible (or polynomial-time reducible) to L2, if there is
a polynomial time Turing machine M : {0, 1}∗ → {0, 1}∗ such that

x ∈ L1 ⇐⇒ M(x) ∈ L2

We say L is NP-hard, if for every L′ ∈ NP, L′ ≤P L. If L ∈ NP is NP-hard,
then we say that L is NP-complete.

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 21 / 24

Reductions and Completeness

We say that

L1 ≤P L2

that is L1 is Karp reducible (or polynomial-time reducible) to L2, if there is
a polynomial time Turing machine M : {0, 1}∗ → {0, 1}∗ such that

x ∈ L1 ⇐⇒ M(x) ∈ L2

We say L is NP-hard, if for every L′ ∈ NP, L′ ≤P L. If L ∈ NP is NP-hard,
then we say that L is NP-complete.

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 21 / 24

Reductions and Completeness

We say that

L1 ≤P L2

that is L1 is Karp reducible (or polynomial-time reducible) to L2, if there is
a polynomial time Turing machine M : {0, 1}∗ → {0, 1}∗ such that

x ∈ L1 ⇐⇒ M(x) ∈ L2

We say L is NP-hard, if for every L′ ∈ NP, L′ ≤P L. If L ∈ NP is NP-hard,
then we say that L is NP-complete.

Theorem (Cook-Levin, 1971)

SAT is NP-complete.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 21 / 24

Reductions and Completeness

When working with NL, the appropriate notion of reduction is logspace
reducible, denoted by ≤L. We will not go into the technical definition of
this.
We have the following theorem:

Theorem

stcon is NL-complete.

Here stcon is directed connectivity of s, t in a digraph G .

The proof idea is convert any NL problem into the configuration graph of
the nondeterministic Turing machine that solves it in log-space, and then
ask whether the accept state is reachable from the start state.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 22 / 24

Reductions and Completeness

When working with NL, the appropriate notion of reduction is logspace
reducible, denoted by ≤L. We will not go into the technical definition of
this.
We have the following theorem:

Theorem

stcon is NL-complete.

Here stcon is directed connectivity of s, t in a digraph G .

The proof idea is convert any NL problem into the configuration graph of
the nondeterministic Turing machine that solves it in log-space, and then
ask whether the accept state is reachable from the start state.

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 22 / 24

Connecting deterministic and nondeterministic space

Finally, we have the following theorem:

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2)

The proof idea is the following; first, there is an algorithm which
demonstrates that stcon ∈ L2. In particular, this shows that NL ⊆ L2.

Now, for L ∈ NSPACE(f (n)), there is a nondeterministic Turing machine
N which decides it. Thus, solving L is equivalent to figuring out whether
the accepting configuration is reachable from the starting configuration in
the configuration graph of N. This graph has size 2O(f (n), and so, this
takes time O(f (n)2).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 23 / 24

Connecting deterministic and nondeterministic space

Finally, we have the following theorem:

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2)

The proof idea is the following; first, there is an algorithm which
demonstrates that stcon ∈ L2. In particular, this shows that NL ⊆ L2.

Now, for L ∈ NSPACE(f (n)), there is a nondeterministic Turing machine
N which decides it. Thus, solving L is equivalent to figuring out whether
the accepting configuration is reachable from the starting configuration in
the configuration graph of N. This graph has size 2O(f (n), and so, this
takes time O(f (n)2).

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 23 / 24

The End

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 24 / 24

	Introduction
	What is Computation?

	Formalizing Efficient Computation
	Time Complexity: ¶
	Space Complexity: L
	The Relationship between Time and Space Complexity

	Reingold's Theorem: ustconL
	Nondeterminism in Space Complexity

