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Decision Problems

We will restrict ourselves to decision problems for this talk. A decision
problem is a function f : {0, 1}∗ → {0, 1}.

Equivalently, a decision problem is a subset L ⊆ {0, 1}∗.

When asking yes-or-no questions about countable collections of discrete
objects (like graphs, integers, binary strings) it is usually possible to
encode the question as a decision problem. For a toy example, consider
the parity problem: n ∈ N, is the number of 1 in the binary expansion of
n odd?
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Turing Machine

Definition

A deterministic k-tape Turing machine M is a tuple (Q, Γ, δ) where

Q is a finite set of states.

Γ is a finite set of symbols, called an alphabet. These are the symbols
that can be written on any of the tapes of the Turing machine.

δ : Q × Γk → Q × Γk−1 × {l,r, s}k is called the transition function.

There are two distinguished states qstart, qhalt ∈ Q. qhalt has the
property that δ(qhalt, ·) does not change any tapes, or move any of
the heads.

There is a distinguished symbol � ∈ Γ, representing a blank space.

In particular, we can choose Γ = {0, 1,�}, and set k = 3. As long as Γ
has at least two non-blank elements, it doesn’t practically change anything
we will discuss.
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What is an Efficient Computation?

There are two basic resources a computer uses: time and space.

Informally, we define these resources as follows:

Definition

For a given deterministic Turing machine M, and a given input
x ∈ {0, 1}∗, the time TM(x) on that input is the number of transitions M
makes on input x before it halts.

The space SM(x) is the largest distance travelled by the head of any work
tape before M halts on input x . Further, for n ∈ N,

TM(n) = max
|x |≤n

TM(x)

SM(n) = max
|x |≤n

SM(x)
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What is an Efficient Computation?

This leads us to the following definitions:

Definition (DTIME)

For L ⊆ {0, 1}∗, we say L ∈ DTIME(f (n)), if there is a Turing machine M
that decides L such that

TM(n) = O(f (n))

Definition (DSPACE)

Similarly, we say L ∈ DSPACE(f (n)), if there is a Turing machine M that
decides L such that

SM(n) = O(f (n))

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 7 / 24



What is an Efficient Computation?

This leads us to the following definitions:

Definition (DTIME)

For L ⊆ {0, 1}∗, we say L ∈ DTIME(f (n)), if there is a Turing machine M
that decides L such that

TM(n) = O(f (n))

Definition (DSPACE)

Similarly, we say L ∈ DSPACE(f (n)), if there is a Turing machine M that
decides L such that

SM(n) = O(f (n))

Anurag Sahay (UoR) Crash Course in Complexity 25th February, 2020 7 / 24



Toy example: parity

We now describe a Turing machine that decides parity, as follows:

On the work tape, write 0.

Read the input tape from left to right, and do the following:

If the symbol read is a 0, the simply keep reading the input (i.e., move
right) without changing anything else.
If the symbol read is a 1, then switch the symbol on the work tape
(from 0 to 1 and vice-versa). Continue reading the input after.
If the symbol read is a �, copy the symbol from the work tape to the
output and halt.

It’s not hard to formalize the above description, and it is easy to see that
parity ∈ DTIME (n) ∩ DSPACE (1).
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What is a Time Efficient Computation?

Returning to the formalizing efficient computability. Specificially, for
time-efficiency,:

Definition (Polynomial Time)

P =
⋃
k≥1

DTIME(nk)

Why P? Isn’t an algorithm with time complexity O(nlog log log n) superior to
one with complexity O(n1000)? Why not define it as DTIME(n2)?

Extended Church-Turing hypothesis: on all typical models of
computations, the notion of P is invariant under simulation.

P is closed under composition (calling polynomially many subroutines
each taking polynomial time will not increase the running time
beyond polynomial).
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Another Time Complexity Class

We have the following definition:

Definition (Exponential Time)

EXP =
⋃
k≥1

DTIME(2n
k
)

Clearly P ⊆ EXP. In fact, it is known that P ( EXP.
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What is the space-efficiency analogue of P?

We now want a notion of space-efficient computation. A naive idea would
be to mimic the previous definition, to get

Definition (Polynomial Space)

PSPACE =
⋃
k≥1

DSPACE(nk)

However, here’s a heuristic for why this is not a very efficient notion of
space complexity: which way does the inclusion between P and PSPACE
go?

It is known that P ⊆ PSPACE , and it is actually expected that
P ( PSPACE (for example, P 6= NP would imply this).
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What is the space-efficiency analogue of P?

The analogue for P is space-complexity is the following:

Definition (LogSpace)

L = DSPACE(log n)

Note that clearly L ⊆ PSPACE . In fact, L ⊆ P, as we will show soon.
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How do these notions relate?

We have the following theorem:

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ DTIME(2O(f (n)))

Proof.

The first inclusion is trivial: note that in time t, no head of the TM could
have used more space than t.
For the second, suppose that M uses s space on some input x . We define
the configuration graph GM,x to be the directed graph whose vertices are
configurations, and v → u ⇐⇒ δ(v) = u. Then, there are at most
2OM(s) many configurations. Note GM,x must be a directed acyclic graph
(otherwise there would be infinite loops), and hence the time taken is at
most the largest walk in the graph, and hence � 2OM(s).
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How do these notions relate?

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ DTIME(2O(f (n)))

As an immediate corrolary to the above theorem, we see that
L ⊆ P ⊆ PSPACE ⊆ EXP, some of which we claimed earlier.

None of these are known to be strict (though it is known that
L ( PSPACE and P ( EXP).
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The decision problem ustcon

We now describe ustcon.

Definition (Undirected st-connectivity)

ustcon is the following decision problem:

Input: an undirected graph G = (V ,E ), and two vertices s, t ∈ V

Output: 1 if s  t in G , and 0 otherwise.

Note that this can be encoded in a way such that the input size is a fixed
polynomial in |V |, so in particular, we can replace the size of the input
with |V |= n in our estimates.
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Reingold’s Theorem

This brings us to the goal of the next talk:

Theorem (Reingold, 2005)

ustcon ∈ L

We will prove this next time. For now, we provide some motivation for
why this result is possibly surprising.
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Nondeterministic Turing Machine

Before we motivate the importance of Reingold’s theorem, we consider an
augmented model of computation, called the nondeterministic Turing
machine.

Definition

A nondeterministic Turing machine N is a tuple (Q, Γ, δ) where the
definition is the same as that of a Turing machine, except that instead of
being a single-valued function, δ is a multi-valued function (i.e., it is a
relation). We say that an NTM N accepts precisely when at least one of
the paths accepts, and it rejects when all paths reject.

Clearly, every deterministic Turing machine is a nondeterministic one.
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Nondeterministic Complexity

All of the complexity classes we defined earlier generalize:

Definition (NTIME)

For L ⊆ {0, 1}∗,L ∈ NTIME(f (n)), if there is a nondeterministic Turing
machine N that decides L such that

TN(n) = O(f (n))

Definition (NSPACE)

L ∈ NSPACE(f (n)), if there is a nondeterministic Turing machine N that
decides L such that

SN(n) = O(f (n))
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Nondeterministic Complexity

Definition (Nondeterministic Polynomial Time)

NP =
⋃
k≥1

NTIME(nk)

Definition (Nondeterministic LogSpace)

NL = NSPACE(log n)

Big open problem: does adding nondeterminism to Turing machines
change efficiently computable classes? Clearly DTIME ⊆ NTIME and
DSPACE ⊆ NSPACE. Is P = NP? Is L = NL? Is EXP = NEXP?

All open! (modulo some interrelations, like EXP = NEXP =⇒ P = NP).
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How does nondeterministic space relate to time?

In fact, a more careful proof of the theorem relating deterministic space to
deterministic time tells us that

Theorem (Theorem 4.3 from [AB09])

DTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ NSPACE(f (n)) ⊆ DTIME(2O(f (n)))

In particular, this has a corrolary that NL ⊆ P.

We also have the following relationship between the various logarithmic
space classes:

Theorem

L ⊆ SL ⊆ RL ⊆ NL ⊆ L2
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Reductions and Completeness

We say that

L1 ≤P L2

that is L1 is Karp reducible (or polynomial-time reducible) to L2, if there is
a polynomial time Turing machine M : {0, 1}∗ → {0, 1}∗ such that

x ∈ L1 ⇐⇒ M(x) ∈ L2

We say L is NP-hard, if for every L′ ∈ NP, L′ ≤P L. If L ∈ NP is NP-hard,
then we say that L is NP-complete.

Theorem (Cook-Levin, 1971)

SAT is NP-complete.
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Reductions and Completeness

When working with NL, the appropriate notion of reduction is logspace
reducible, denoted by ≤L. We will not go into the technical definition of
this.
We have the following theorem:

Theorem

stcon is NL-complete.

Here stcon is directed connectivity of s, t in a digraph G .

The proof idea is convert any NL problem into the configuration graph of
the nondeterministic Turing machine that solves it in log-space, and then
ask whether the accept state is reachable from the start state.
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stcon is NL-complete.

Here stcon is directed connectivity of s, t in a digraph G .

The proof idea is convert any NL problem into the configuration graph of
the nondeterministic Turing machine that solves it in log-space, and then
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Connecting deterministic and nondeterministic space

Finally, we have the following theorem:

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2)

The proof idea is the following; first, there is an algorithm which
demonstrates that stcon ∈ L2. In particular, this shows that NL ⊆ L2.

Now, for L ∈ NSPACE(f (n)), there is a nondeterministic Turing machine
N which decides it. Thus, solving L is equivalent to figuring out whether
the accepting configuration is reachable from the starting configuration in
the configuration graph of N. This graph has size 2O(f (n), and so, this
takes time O(f (n)2).
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The End
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