
The Zig-Zag Product and Reingold’s Theorem

Anurag Sahay

University of Rochester

asahay@ur.rochester.edu

27th February, 2020

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 1 / 20

Overview of the Talk

1 Introduction
Reingold’s Theorem: ustcon ∈ L

2 Expander Graphs
Diameter of an Expander Graph

3 Initial Ideas
Graph Exponentiation
Tensor Product

4 The Zig-Zag Product

5 Reingold’s Algorithm

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 2 / 20

References

Omer Reingold.
Undirected connectivity in log-space.
Journal of the ACM (JACM), 55(4):1–24, 2008.

Omer Reingold, Salil Vadhan, and Avi Wigderson.
Entropy waves, the zig-zag graph product, and new constant-degree
expanders.
Annals of mathematics, 155(1):157–187, 2002.

Shlomo Hoory, Nathan Linial, and Avi Wigderson.
Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

Luca Trevisan.
Lecture Notes – U.C. Berkeley,
CS278: Computational Complexity, 2004.
https://people.eecs.berkeley.edu/~luca/cs278-04/notes/.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 3 / 20

https://people.eecs.berkeley.edu/~luca/cs278-04/notes/

ustcon and L

Recall the definition of ustcon and L:

Definition (Undirected st-connectivity)

ustcon is the following decision problem:

Input: an undirected graph G = (V ,E), and two vertices s, t ∈ V

Output: 1 if s t in G , and 0 otherwise.

Definition (LogSpace)

L = DSPACE(log n)

In other words, L contains all languages L ⊆ {0, 1}∗ for which a Turing
machine M decides L using no more that O(log n) space on input of
length n.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 4 / 20

ustcon and L

Recall the definition of ustcon and L:

Definition (Undirected st-connectivity)

ustcon is the following decision problem:

Input: an undirected graph G = (V ,E), and two vertices s, t ∈ V

Output: 1 if s t in G , and 0 otherwise.

Definition (LogSpace)

L = DSPACE(log n)

In other words, L contains all languages L ⊆ {0, 1}∗ for which a Turing
machine M decides L using no more that O(log n) space on input of
length n.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 4 / 20

Reingold’s Theorem

The goal of this talk is to describe the proof of Reingold’s theorem:

Theorem (Reingold, 2005)

ustcon ∈ L

Note that the graph is not assumed to be simple (multiedges and loops are
both allowed). We will restrict ourselves largely to regular graphs, and
then show how the problem in a general graph can be reduced to the
regular case.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 5 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

The morality of expansion

In different contexts, an expander graph (or more accurately, an expander
graph family) is defined morally in one of the following ways:

The graph is a sparse approximation for the complete graph

The graph satisfies a strong isoperimetric inequality

Every set of vertices has many neighbours

Every cut has many edges across it

A (uniform) random walk on on the graph quickly converges to the
stationary distribution

The graph has a large spectral gap

Loosely speaking, under the right assumptions on the graphs, all of the
above notions are equivalent.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 6 / 20

Definition of Expander Graphs

We adopt the spectral point of view, restricted to regular graphs:

Definition ((n, d , λ)-graph)

We say that G is an (n, d , λ)-graph if G is a d-regular graph on n vertices
such that

λ ≥ max
i 6=1

|λi |
d

where λ1 ≥ λ2 ≥ · · · ≥ λn is the spectrum of the adjacency matrix A of G .

Note here that λ1 = d , and that the maximum on the right is 1 if and
only if G is either disconnected or bipartite.

Definition (Expander Graphs)

A family of d-regular graphs {Gj}j is called an expander family with
spectral gap 1− λ (or a λ-expander family), if every Gj is an
(n, d , λ)-graph for some n = nj .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 7 / 20

Definition of Expander Graphs

We adopt the spectral point of view, restricted to regular graphs:

Definition ((n, d , λ)-graph)

We say that G is an (n, d , λ)-graph if G is a d-regular graph on n vertices
such that

λ ≥ max
i 6=1

|λi |
d

where λ1 ≥ λ2 ≥ · · · ≥ λn is the spectrum of the adjacency matrix A of G .

Note here that λ1 = d , and that the maximum on the right is 1 if and
only if G is either disconnected or bipartite.

Definition (Expander Graphs)

A family of d-regular graphs {Gj}j is called an expander family with
spectral gap 1− λ (or a λ-expander family), if every Gj is an
(n, d , λ)-graph for some n = nj .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 7 / 20

The Punchline: Expanders have Logarithmic Diameter

The usefulness of expanders in solving ustcon comes from the following
lemma about their diameters:

Lemma (Diameter of an Expander)

Let G = (V ,E) be a connected (n, d , λ)-graph. Then,

diam(G) = max
u,v

d(u, v) = Oλ(log n) = O
(

log n

1− λ

)
where the implicit constant is effective, and efficiently computable.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 8 / 20

Solving ustcon for λ-expanders

We will now describe a log-space algorithm for d-regular graphs for which
every connected component is a λ-expander with λ < 1.

Let (G , s, t) be the input.

Let ∆ = Cλ log n, where Cλ is the implicit constant from the lemma.
Since every component is a λ-expander, if s t, then there is a path
of length of ≤ ∆.

Each path s = v0, · · · , vk of length k ≤ ∆ can be encoded as a string
in {1, · · · , d}≤∆ where the jth letter encodes which of the d vertices
adjacent to vj−1 is the next step, vj .

Keep a counter storing which of these paths we are on, initialized to
all 1s. This takes O(∆ log d) = Oλ(log d log n) = Od ,λ(log n) space.

Trawl through this path to see if t appears. If it does, halt and
accept. This takes O(1) space.

Increment the counter by 1, treating it as a d-ary integer. If the
counter overflows to all 1s, then halt and reject.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 9 / 20

Solving ustcon for λ-expanders

We will now describe a log-space algorithm for d-regular graphs for which
every connected component is a λ-expander with λ < 1.

Let (G , s, t) be the input.

Let ∆ = Cλ log n, where Cλ is the implicit constant from the lemma.
Since every component is a λ-expander, if s t, then there is a path
of length of ≤ ∆.

Each path s = v0, · · · , vk of length k ≤ ∆ can be encoded as a string
in {1, · · · , d}≤∆ where the jth letter encodes which of the d vertices
adjacent to vj−1 is the next step, vj .

Keep a counter storing which of these paths we are on, initialized to
all 1s. This takes O(∆ log d) = Oλ(log d log n) = Od ,λ(log n) space.

Trawl through this path to see if t appears. If it does, halt and
accept. This takes O(1) space.

Increment the counter by 1, treating it as a d-ary integer. If the
counter overflows to all 1s, then halt and reject.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 9 / 20

Solving ustcon for λ-expanders

We will now describe a log-space algorithm for d-regular graphs for which
every connected component is a λ-expander with λ < 1.

Let (G , s, t) be the input.

Let ∆ = Cλ log n, where Cλ is the implicit constant from the lemma.
Since every component is a λ-expander, if s t, then there is a path
of length of ≤ ∆.

Each path s = v0, · · · , vk of length k ≤ ∆ can be encoded as a string
in {1, · · · , d}≤∆ where the jth letter encodes which of the d vertices
adjacent to vj−1 is the next step, vj .

Keep a counter storing which of these paths we are on, initialized to
all 1s. This takes O(∆ log d) = Oλ(log d log n) = Od ,λ(log n) space.

Trawl through this path to see if t appears. If it does, halt and
accept. This takes O(1) space.

Increment the counter by 1, treating it as a d-ary integer. If the
counter overflows to all 1s, then halt and reject.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 9 / 20

Solving ustcon for λ-expanders

We will now describe a log-space algorithm for d-regular graphs for which
every connected component is a λ-expander with λ < 1.

Let (G , s, t) be the input.

Let ∆ = Cλ log n, where Cλ is the implicit constant from the lemma.
Since every component is a λ-expander, if s t, then there is a path
of length of ≤ ∆.

Each path s = v0, · · · , vk of length k ≤ ∆ can be encoded as a string
in {1, · · · , d}≤∆ where the jth letter encodes which of the d vertices
adjacent to vj−1 is the next step, vj .

Keep a counter storing which of these paths we are on, initialized to
all 1s. This takes O(∆ log d) = Oλ(log d log n) = Od ,λ(log n) space.

Trawl through this path to see if t appears. If it does, halt and
accept. This takes O(1) space.

Increment the counter by 1, treating it as a d-ary integer. If the
counter overflows to all 1s, then halt and reject.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 9 / 20

Solving ustcon for λ-expanders

We will now describe a log-space algorithm for d-regular graphs for which
every connected component is a λ-expander with λ < 1.

Let (G , s, t) be the input.

Let ∆ = Cλ log n, where Cλ is the implicit constant from the lemma.
Since every component is a λ-expander, if s t, then there is a path
of length of ≤ ∆.

Each path s = v0, · · · , vk of length k ≤ ∆ can be encoded as a string
in {1, · · · , d}≤∆ where the jth letter encodes which of the d vertices
adjacent to vj−1 is the next step, vj .

Keep a counter storing which of these paths we are on, initialized to
all 1s. This takes O(∆ log d) = Oλ(log d log n) = Od ,λ(log n) space.

Trawl through this path to see if t appears. If it does, halt and
accept. This takes O(1) space.

Increment the counter by 1, treating it as a d-ary integer. If the
counter overflows to all 1s, then halt and reject.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 9 / 20

Solving ustcon for λ-expanders

We will now describe a log-space algorithm for d-regular graphs for which
every connected component is a λ-expander with λ < 1.

Let (G , s, t) be the input.

Let ∆ = Cλ log n, where Cλ is the implicit constant from the lemma.
Since every component is a λ-expander, if s t, then there is a path
of length of ≤ ∆.

Each path s = v0, · · · , vk of length k ≤ ∆ can be encoded as a string
in {1, · · · , d}≤∆ where the jth letter encodes which of the d vertices
adjacent to vj−1 is the next step, vj .

Keep a counter storing which of these paths we are on, initialized to
all 1s. This takes O(∆ log d) = Oλ(log d log n) = Od ,λ(log n) space.

Trawl through this path to see if t appears. If it does, halt and
accept. This takes O(1) space.

Increment the counter by 1, treating it as a d-ary integer. If the
counter overflows to all 1s, then halt and reject.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 9 / 20

Proof of Logarithmic Diameter

Proof.

Let M = A/d be the random walk matrix, and ~u = ~v1 = (1/n, · · · , 1/n)T

be the uniform distribution on the vertices. Let ~p be any probability
distribution on the vertices, and let t be a time parameter.

~u is an eigenvector of M with eigenvalue 1. Let ~v2, · · ·~vn be the
eigenvector of A with eigenvalue A~vj = λj~vj . Then, clearly, for j 6= 1,

‖M~vj‖2 =
|λj |
d
‖~vj‖2 ≤ λ ‖~vj‖2

In particular, this means that M is a λ-contraction on ~u⊥. Note that
(~p − ~u) · ~u = 0, and hence if t ≥ 1000(log n

log(1/λ)) ∼ log n
1−λ ,∥∥Mt~p − ~u

∥∥
2

=
∥∥Mt(~p − ~u)

∥∥
2
≤ λt ‖~p − ~u‖2 ≤ 2λt ≤ 2

n1000

But this can only happen if every vertex has positive probability at time t.
Thus, every vertex is reachable in t steps; diam(G) ≤ t as desired.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 10 / 20

Proof of Logarithmic Diameter

Proof.

Let M = A/d be the random walk matrix, and ~u = ~v1 = (1/n, · · · , 1/n)T

be the uniform distribution on the vertices. Let ~p be any probability
distribution on the vertices, and let t be a time parameter.
~u is an eigenvector of M with eigenvalue 1. Let ~v2, · · ·~vn be the
eigenvector of A with eigenvalue A~vj = λj~vj .

Then, clearly, for j 6= 1,

‖M~vj‖2 =
|λj |
d
‖~vj‖2 ≤ λ ‖~vj‖2

In particular, this means that M is a λ-contraction on ~u⊥. Note that
(~p − ~u) · ~u = 0, and hence if t ≥ 1000(log n

log(1/λ)) ∼ log n
1−λ ,∥∥Mt~p − ~u

∥∥
2

=
∥∥Mt(~p − ~u)

∥∥
2
≤ λt ‖~p − ~u‖2 ≤ 2λt ≤ 2

n1000

But this can only happen if every vertex has positive probability at time t.
Thus, every vertex is reachable in t steps; diam(G) ≤ t as desired.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 10 / 20

Proof of Logarithmic Diameter

Proof.

Let M = A/d be the random walk matrix, and ~u = ~v1 = (1/n, · · · , 1/n)T

be the uniform distribution on the vertices. Let ~p be any probability
distribution on the vertices, and let t be a time parameter.
~u is an eigenvector of M with eigenvalue 1. Let ~v2, · · ·~vn be the
eigenvector of A with eigenvalue A~vj = λj~vj . Then, clearly, for j 6= 1,

‖M~vj‖2 =
|λj |
d
‖~vj‖2 ≤ λ ‖~vj‖2

In particular, this means that M is a λ-contraction on ~u⊥. Note that
(~p − ~u) · ~u = 0, and hence if t ≥ 1000(log n

log(1/λ)) ∼ log n
1−λ ,∥∥Mt~p − ~u

∥∥
2

=
∥∥Mt(~p − ~u)

∥∥
2
≤ λt ‖~p − ~u‖2 ≤ 2λt ≤ 2

n1000

But this can only happen if every vertex has positive probability at time t.
Thus, every vertex is reachable in t steps; diam(G) ≤ t as desired.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 10 / 20

Proof of Logarithmic Diameter

Proof.

Let M = A/d be the random walk matrix, and ~u = ~v1 = (1/n, · · · , 1/n)T

be the uniform distribution on the vertices. Let ~p be any probability
distribution on the vertices, and let t be a time parameter.
~u is an eigenvector of M with eigenvalue 1. Let ~v2, · · ·~vn be the
eigenvector of A with eigenvalue A~vj = λj~vj . Then, clearly, for j 6= 1,

‖M~vj‖2 =
|λj |
d
‖~vj‖2 ≤ λ ‖~vj‖2

In particular, this means that M is a λ-contraction on ~u⊥.

Note that
(~p − ~u) · ~u = 0, and hence if t ≥ 1000(log n

log(1/λ)) ∼ log n
1−λ ,∥∥Mt~p − ~u

∥∥
2

=
∥∥Mt(~p − ~u)

∥∥
2
≤ λt ‖~p − ~u‖2 ≤ 2λt ≤ 2

n1000

But this can only happen if every vertex has positive probability at time t.
Thus, every vertex is reachable in t steps; diam(G) ≤ t as desired.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 10 / 20

Proof of Logarithmic Diameter

Proof.

Let M = A/d be the random walk matrix, and ~u = ~v1 = (1/n, · · · , 1/n)T

be the uniform distribution on the vertices. Let ~p be any probability
distribution on the vertices, and let t be a time parameter.
~u is an eigenvector of M with eigenvalue 1. Let ~v2, · · ·~vn be the
eigenvector of A with eigenvalue A~vj = λj~vj . Then, clearly, for j 6= 1,

‖M~vj‖2 =
|λj |
d
‖~vj‖2 ≤ λ ‖~vj‖2

In particular, this means that M is a λ-contraction on ~u⊥. Note that
(~p − ~u) · ~u = 0, and hence if t ≥ 1000(log n

log(1/λ)) ∼ log n
1−λ ,∥∥Mt~p − ~u

∥∥
2

=
∥∥Mt(~p − ~u)

∥∥
2
≤ λt ‖~p − ~u‖2 ≤ 2λt ≤ 2

n1000

But this can only happen if every vertex has positive probability at time t.
Thus, every vertex is reachable in t steps; diam(G) ≤ t as desired.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 10 / 20

Proof of Logarithmic Diameter

Proof.

Let M = A/d be the random walk matrix, and ~u = ~v1 = (1/n, · · · , 1/n)T

be the uniform distribution on the vertices. Let ~p be any probability
distribution on the vertices, and let t be a time parameter.
~u is an eigenvector of M with eigenvalue 1. Let ~v2, · · ·~vn be the
eigenvector of A with eigenvalue A~vj = λj~vj . Then, clearly, for j 6= 1,

‖M~vj‖2 =
|λj |
d
‖~vj‖2 ≤ λ ‖~vj‖2

In particular, this means that M is a λ-contraction on ~u⊥. Note that
(~p − ~u) · ~u = 0, and hence if t ≥ 1000(log n

log(1/λ)) ∼ log n
1−λ ,∥∥Mt~p − ~u

∥∥
2

=
∥∥Mt(~p − ~u)

∥∥
2
≤ λt ‖~p − ~u‖2 ≤ 2λt ≤ 2

n1000

But this can only happen if every vertex has positive probability at time t.
Thus, every vertex is reachable in t steps; diam(G) ≤ t as desired.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 10 / 20

Naive Idea: Graph Exponentiation

Definition (Graph Exponentiation)

For a graph G , we define the graph G k as follows:

V (G k) = V (G).

A(G k) = A(G)k .

In other words, there is an edge between two vertices in G k for every walk
of length k between those two vertices in G .

Note s is connected to t in G k if and only if it is connected in G , and it is
immediate that if G is an (n, d , λ)-graph then G k is an (n, dk , λk)-graph.
This vastly improves expansion – however, the degree blows up very
quickly. Our algorithm (for constant degree expanders) does not apply!

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 11 / 20

Naive Idea: Graph Exponentiation

Definition (Graph Exponentiation)

For a graph G , we define the graph G k as follows:

V (G k) = V (G).

A(G k) = A(G)k .

In other words, there is an edge between two vertices in G k for every walk
of length k between those two vertices in G .

Note s is connected to t in G k if and only if it is connected in G , and it is
immediate that if G is an (n, d , λ)-graph then G k is an (n, dk , λk)-graph.
This vastly improves expansion – however, the degree blows up very
quickly. Our algorithm (for constant degree expanders) does not apply!

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 11 / 20

Naive Idea: Graph Exponentiation

Definition (Graph Exponentiation)

For a graph G , we define the graph G k as follows:

V (G k) = V (G).

A(G k) = A(G)k .

In other words, there is an edge between two vertices in G k for every walk
of length k between those two vertices in G .

Note s is connected to t in G k if and only if it is connected in G , and it is
immediate that if G is an (n, d , λ)-graph then G k is an (n, dk , λk)-graph.
This vastly improves expansion – however, the degree blows up very
quickly. Our algorithm (for constant degree expanders) does not apply!

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 11 / 20

Naive Idea: Graph Exponentiation

Definition (Graph Exponentiation)

For a graph G , we define the graph G k as follows:

V (G k) = V (G).

A(G k) = A(G)k .

In other words, there is an edge between two vertices in G k for every walk
of length k between those two vertices in G .

Note s is connected to t in G k if and only if it is connected in G , and it is
immediate that if G is an (n, d , λ)-graph then G k is an (n, dk , λk)-graph.
This vastly improves expansion – however, the degree blows up very
quickly. Our algorithm (for constant degree expanders) does not apply!

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 11 / 20

More Refined Attempt: Tensoring Graphs

Definition (Tensor Product)

For graphs G and H, we have the tensor product G ⊗ H:

V (G ⊗ H) = V (G)× V (H).

A(G ⊗ H) = A(G)⊗ A(H).

In other words, uu′ ∼ vv ′ in G ⊗ H if u ∼ v in G and u′ ∼ v ′ in H.

It is not hard to see that if G is an (n, d , α)-graph and H is an
(m, d ′, β)-graph, then G ⊗H is an (mn, dd ′, λ)-graph with λ = max{α, β}
– this follows from the fact that the spectrum of a tensor product of
matrices is the pointwise product of their spectra.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 12 / 20

More Refined Attempt: Tensoring Graphs

Definition (Tensor Product)

For graphs G and H, we have the tensor product G ⊗ H:

V (G ⊗ H) = V (G)× V (H).

A(G ⊗ H) = A(G)⊗ A(H).

In other words, uu′ ∼ vv ′ in G ⊗ H if u ∼ v in G and u′ ∼ v ′ in H.

It is not hard to see that if G is an (n, d , α)-graph and H is an
(m, d ′, β)-graph, then G ⊗H is an (mn, dd ′, λ)-graph with λ = max{α, β}
– this follows from the fact that the spectrum of a tensor product of
matrices is the pointwise product of their spectra.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 12 / 20

More Refined Attempt: Tensoring Graphs

Definition (Tensor Product)

For graphs G and H, we have the tensor product G ⊗ H:

V (G ⊗ H) = V (G)× V (H).

A(G ⊗ H) = A(G)⊗ A(H).

In other words, uu′ ∼ vv ′ in G ⊗ H if u ∼ v in G and u′ ∼ v ′ in H.

It is not hard to see that if G is an (n, d , α)-graph and H is an
(m, d ′, β)-graph, then G ⊗H is an (mn, dd ′, λ)-graph with λ = max{α, β}
– this follows from the fact that the spectrum of a tensor product of
matrices is the pointwise product of their spectra.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 12 / 20

More Refined Attempt: Tensoring Graphs

Definition (Tensor Product)

For graphs G and H, we have the tensor product G ⊗ H:

V (G ⊗ H) = V (G)× V (H).

A(G ⊗ H) = A(G)⊗ A(H).

In other words, uu′ ∼ vv ′ in G ⊗ H if u ∼ v in G and u′ ∼ v ′ in H.

It is not hard to see that if G is an (n, d , α)-graph and H is an
(m, d ′, β)-graph, then G ⊗H is an (mn, dd ′, λ)-graph with λ = max{α, β}
– this follows from the fact that the spectrum of a tensor product of
matrices is the pointwise product of their spectra.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 12 / 20

The Replacement Product

This brings us to the novel construction known as the Zig-Zag product.
For this, we assume that all graphs are on the vertex set {1, · · · , n} for
some n.

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H, and for every
v ∈ V (G) fix an ordering on the edges incident on it. We define G©r H as
follows:

V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (u, j) in G©r H for every edge
between i and j in H. These are called zigs.

There is an edge between (u, i) and (v , j) if the ith edge incident on
u and the jth edge incident on v are the same edge. These are called
zags.

All edges are either zigs or zags.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 13 / 20

The Replacement Product

This brings us to the novel construction known as the Zig-Zag product.
For this, we assume that all graphs are on the vertex set {1, · · · , n} for
some n.

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H, and for every
v ∈ V (G) fix an ordering on the edges incident on it. We define G©r H as
follows:

V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (u, j) in G©r H for every edge
between i and j in H. These are called zigs.

There is an edge between (u, i) and (v , j) if the ith edge incident on
u and the jth edge incident on v are the same edge. These are called
zags.

All edges are either zigs or zags.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 13 / 20

The Replacement Product

This brings us to the novel construction known as the Zig-Zag product.
For this, we assume that all graphs are on the vertex set {1, · · · , n} for
some n.

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H, and for every
v ∈ V (G) fix an ordering on the edges incident on it. We define G©r H as
follows:

V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (u, j) in G©r H for every edge
between i and j in H. These are called zigs.

There is an edge between (u, i) and (v , j) if the ith edge incident on
u and the jth edge incident on v are the same edge. These are called
zags.

All edges are either zigs or zags.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 13 / 20

The Replacement Product

This brings us to the novel construction known as the Zig-Zag product.
For this, we assume that all graphs are on the vertex set {1, · · · , n} for
some n.

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H, and for every
v ∈ V (G) fix an ordering on the edges incident on it. We define G©r H as
follows:

V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (u, j) in G©r H for every edge
between i and j in H. These are called zigs.

There is an edge between (u, i) and (v , j) if the ith edge incident on
u and the jth edge incident on v are the same edge. These are called
zags.

All edges are either zigs or zags.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 13 / 20

The Zig-Zag Product

We can now define the Zig-Zag product in terms of the Replacement
product:

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H. We define G©r H as
follows:

V (G©z H) = V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (v , j) in G©z H if there is a path
of length three betwee the two G©r H which is a zig-zag-zig.

In other words, there is an edge between (u, i) and (v , j) in G©z H,
whenever i is adjacent to k in H and j is adjacent to ` in H, where
the kth edge at u is the same as the `th edge at v .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 14 / 20

The Zig-Zag Product

We can now define the Zig-Zag product in terms of the Replacement
product:

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H. We define G©r H as
follows:

V (G©z H) = V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (v , j) in G©z H if there is a path
of length three betwee the two G©r H which is a zig-zag-zig.

In other words, there is an edge between (u, i) and (v , j) in G©z H,
whenever i is adjacent to k in H and j is adjacent to ` in H, where
the kth edge at u is the same as the `th edge at v .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 14 / 20

The Zig-Zag Product

We can now define the Zig-Zag product in terms of the Replacement
product:

Definition (Replacement Product)

For an (n,m, α)-graph G and an (m, d , β)-graph H. We define G©r H as
follows:

V (G©z H) = V (G©r H) = V (G)× V (H)

There is an edge between (u, i) and (v , j) in G©z H if there is a path
of length three betwee the two G©r H which is a zig-zag-zig.

In other words, there is an edge between (u, i) and (v , j) in G©z H,
whenever i is adjacent to k in H and j is adjacent to ` in H, where
the kth edge at u is the same as the `th edge at v .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 14 / 20

The Zig-Zag Product

We have the following theorem relating the expansion properties of G©z H
with those of G and H:

Theorem (Reingold-Vadhan-Wigderson [RVW02])

Let G be an (n,m, α)-graph and H an (m, d , β)-graph. Then G©z H is an
(nm, d2, ϕ)-graph where ϕ = ϕ(α, β) satisfies the following:

α, β < 1 implies ϕ < 1.

ϕ(α, β) ≤ α + β

ϕ(α, β) ≤ 1− (1−β2)(1−α)
2

For now, note that if β ≤ 1/2, then (1− φ) ≥ 3
8 (1− α).

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 15 / 20

The Zig-Zag Product

We have the following theorem relating the expansion properties of G©z H
with those of G and H:

Theorem (Reingold-Vadhan-Wigderson [RVW02])

Let G be an (n,m, α)-graph and H an (m, d , β)-graph. Then G©z H is an
(nm, d2, ϕ)-graph where ϕ = ϕ(α, β) satisfies the following:

α, β < 1 implies ϕ < 1.

ϕ(α, β) ≤ α + β

ϕ(α, β) ≤ 1− (1−β2)(1−α)
2

For now, note that if β ≤ 1/2, then (1− φ) ≥ 3
8 (1− α).

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 15 / 20

The Zig-Zag Product

We have the following theorem relating the expansion properties of G©z H
with those of G and H:

Theorem (Reingold-Vadhan-Wigderson [RVW02])

Let G be an (n,m, α)-graph and H an (m, d , β)-graph. Then G©z H is an
(nm, d2, ϕ)-graph where ϕ = ϕ(α, β) satisfies the following:

α, β < 1 implies ϕ < 1.

ϕ(α, β) ≤ α + β

ϕ(α, β) ≤ 1− (1−β2)(1−α)
2

For now, note that if β ≤ 1/2, then (1− φ) ≥ 3
8 (1− α).

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 15 / 20

The Zig-Zag Product

We have the following theorem relating the expansion properties of G©z H
with those of G and H:

Theorem (Reingold-Vadhan-Wigderson [RVW02])

Let G be an (n,m, α)-graph and H an (m, d , β)-graph. Then G©z H is an
(nm, d2, ϕ)-graph where ϕ = ϕ(α, β) satisfies the following:

α, β < 1 implies ϕ < 1.

ϕ(α, β) ≤ α + β

ϕ(α, β) ≤ 1− (1−β2)(1−α)
2

For now, note that if β ≤ 1/2, then (1− φ) ≥ 3
8 (1− α).

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 15 / 20

The Zig-Zag Product

We have the following theorem relating the expansion properties of G©z H
with those of G and H:

Theorem (Reingold-Vadhan-Wigderson [RVW02])

Let G be an (n,m, α)-graph and H an (m, d , β)-graph. Then G©z H is an
(nm, d2, ϕ)-graph where ϕ = ϕ(α, β) satisfies the following:

α, β < 1 implies ϕ < 1.

ϕ(α, β) ≤ α + β

ϕ(α, β) ≤ 1− (1−β2)(1−α)
2

For now, note that if β ≤ 1/2, then (1− φ) ≥ 3
8 (1− α).

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 15 / 20

Sketch of the Algorithm

We can now describe the algorithm. Suppose G is a d16-regular graph (d
will be fixed later) none of whose connected components are bipartite. Let
H be a fixed (d16, d , β)-graph with β ≤ 1/2.

Recursively define G0 = G and Gj = (Gj−1©z H)8.

It can be shown from our previous calculations that if all connected
components of Gj are αj -expanders for αj < 1, then

1− αj ≥ min

{
1

2
, 2j(1− α0)

}
It can be shown that each connected component of G has spectral
gap at least 1/(d16n2). In particular, this means that for, say
j ≥ 5 log(d16n2) = Od(log n), αj ≤ 1/2.

s, t is connected in G0 only if sj and tj are connected in Gj where sj
and tj are recursively chosen as any vertex in the cloud representing
sj−1 and tj−1. Check sj , tj connectivity instead.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 16 / 20

Sketch of the Algorithm

We can now describe the algorithm. Suppose G is a d16-regular graph (d
will be fixed later) none of whose connected components are bipartite. Let
H be a fixed (d16, d , β)-graph with β ≤ 1/2.

Recursively define G0 = G and Gj = (Gj−1©z H)8.

It can be shown from our previous calculations that if all connected
components of Gj are αj -expanders for αj < 1, then

1− αj ≥ min

{
1

2
, 2j(1− α0)

}
It can be shown that each connected component of G has spectral
gap at least 1/(d16n2). In particular, this means that for, say
j ≥ 5 log(d16n2) = Od(log n), αj ≤ 1/2.

s, t is connected in G0 only if sj and tj are connected in Gj where sj
and tj are recursively chosen as any vertex in the cloud representing
sj−1 and tj−1. Check sj , tj connectivity instead.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 16 / 20

Sketch of the Algorithm

We can now describe the algorithm. Suppose G is a d16-regular graph (d
will be fixed later) none of whose connected components are bipartite. Let
H be a fixed (d16, d , β)-graph with β ≤ 1/2.

Recursively define G0 = G and Gj = (Gj−1©z H)8.

It can be shown from our previous calculations that if all connected
components of Gj are αj -expanders for αj < 1, then

1− αj ≥ min

{
1

2
, 2j(1− α0)

}

It can be shown that each connected component of G has spectral
gap at least 1/(d16n2). In particular, this means that for, say
j ≥ 5 log(d16n2) = Od(log n), αj ≤ 1/2.

s, t is connected in G0 only if sj and tj are connected in Gj where sj
and tj are recursively chosen as any vertex in the cloud representing
sj−1 and tj−1. Check sj , tj connectivity instead.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 16 / 20

Sketch of the Algorithm

We can now describe the algorithm. Suppose G is a d16-regular graph (d
will be fixed later) none of whose connected components are bipartite. Let
H be a fixed (d16, d , β)-graph with β ≤ 1/2.

Recursively define G0 = G and Gj = (Gj−1©z H)8.

It can be shown from our previous calculations that if all connected
components of Gj are αj -expanders for αj < 1, then

1− αj ≥ min

{
1

2
, 2j(1− α0)

}
It can be shown that each connected component of G has spectral
gap at least 1/(d16n2). In particular, this means that for, say
j ≥ 5 log(d16n2) = Od(log n), αj ≤ 1/2.

s, t is connected in G0 only if sj and tj are connected in Gj where sj
and tj are recursively chosen as any vertex in the cloud representing
sj−1 and tj−1. Check sj , tj connectivity instead.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 16 / 20

Sketch of the Algorithm

We can now describe the algorithm. Suppose G is a d16-regular graph (d
will be fixed later) none of whose connected components are bipartite. Let
H be a fixed (d16, d , β)-graph with β ≤ 1/2.

Recursively define G0 = G and Gj = (Gj−1©z H)8.

It can be shown from our previous calculations that if all connected
components of Gj are αj -expanders for αj < 1, then

1− αj ≥ min

{
1

2
, 2j(1− α0)

}
It can be shown that each connected component of G has spectral
gap at least 1/(d16n2). In particular, this means that for, say
j ≥ 5 log(d16n2) = Od(log n), αj ≤ 1/2.

s, t is connected in G0 only if sj and tj are connected in Gj where sj
and tj are recursively chosen as any vertex in the cloud representing
sj−1 and tj−1. Check sj , tj connectivity instead.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 16 / 20

Dotting i’s

We need to check that everything actually can be done in log-space.

First note that if nj is the size of the vertex set of Gj , then
nj = nd16j . Thus, for j ≈d log n, log nj ≈d log n. Thus, connectivity
in the iterated graph Gj is still log-space.

We have the following lemma:

Lemma

Given two vertices u and v in Gj , it can be checked in Od(log n + j) space
whether u and v are adjacent in Gj without explicitly storing the graph Gj .

Putting j ≈d log n in the above lemma tells us that the algorithm for
connectivity in Gj can be executed with log-space overhead without
ever constructing Gj .

Finally, a graph (d16, d , 1/2) can be found using the probabilistic
method, for some fixed small d .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 17 / 20

Dotting i’s

We need to check that everything actually can be done in log-space.

First note that if nj is the size of the vertex set of Gj , then
nj = nd16j . Thus, for j ≈d log n, log nj ≈d log n. Thus, connectivity
in the iterated graph Gj is still log-space.

We have the following lemma:

Lemma

Given two vertices u and v in Gj , it can be checked in Od(log n + j) space
whether u and v are adjacent in Gj without explicitly storing the graph Gj .

Putting j ≈d log n in the above lemma tells us that the algorithm for
connectivity in Gj can be executed with log-space overhead without
ever constructing Gj .

Finally, a graph (d16, d , 1/2) can be found using the probabilistic
method, for some fixed small d .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 17 / 20

Dotting i’s

We need to check that everything actually can be done in log-space.

First note that if nj is the size of the vertex set of Gj , then
nj = nd16j . Thus, for j ≈d log n, log nj ≈d log n. Thus, connectivity
in the iterated graph Gj is still log-space.

We have the following lemma:

Lemma

Given two vertices u and v in Gj , it can be checked in Od(log n + j) space
whether u and v are adjacent in Gj without explicitly storing the graph Gj .

Putting j ≈d log n in the above lemma tells us that the algorithm for
connectivity in Gj can be executed with log-space overhead without
ever constructing Gj .

Finally, a graph (d16, d , 1/2) can be found using the probabilistic
method, for some fixed small d .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 17 / 20

Dotting i’s

We need to check that everything actually can be done in log-space.

First note that if nj is the size of the vertex set of Gj , then
nj = nd16j . Thus, for j ≈d log n, log nj ≈d log n. Thus, connectivity
in the iterated graph Gj is still log-space.

We have the following lemma:

Lemma

Given two vertices u and v in Gj , it can be checked in Od(log n + j) space
whether u and v are adjacent in Gj without explicitly storing the graph Gj .

Putting j ≈d log n in the above lemma tells us that the algorithm for
connectivity in Gj can be executed with log-space overhead without
ever constructing Gj .

Finally, a graph (d16, d , 1/2) can be found using the probabilistic
method, for some fixed small d .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 17 / 20

Dotting i’s

We need to check that everything actually can be done in log-space.

First note that if nj is the size of the vertex set of Gj , then
nj = nd16j . Thus, for j ≈d log n, log nj ≈d log n. Thus, connectivity
in the iterated graph Gj is still log-space.

We have the following lemma:

Lemma

Given two vertices u and v in Gj , it can be checked in Od(log n + j) space
whether u and v are adjacent in Gj without explicitly storing the graph Gj .

Putting j ≈d log n in the above lemma tells us that the algorithm for
connectivity in Gj can be executed with log-space overhead without
ever constructing Gj .

Finally, a graph (d16, d , 1/2) can be found using the probabilistic
method, for some fixed small d .

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 17 / 20

Crossing t’s

We have solved the problem for graphs G which which are d16-regular,
and none of whose components are bipartite. What about general graphs?

First, we reduce to the 3-regular case: for a general graph G , create
G ′ by replacing a vertex v with a cycle of length of deg(v), and edges
of G by matchings (that is, if the ith edge of u and the jth edge of v
coincide then draw and edge between (u, i) and (v , j)).

Add enough loops at every point to make it a d16 − 3 regular graph.
This does not change connectivity.

We now return to the intuition behind Reingold-Vadhan-Wigderson.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 18 / 20

Crossing t’s

We have solved the problem for graphs G which which are d16-regular,
and none of whose components are bipartite. What about general graphs?

First, we reduce to the 3-regular case: for a general graph G , create
G ′ by replacing a vertex v with a cycle of length of deg(v), and edges
of G by matchings (that is, if the ith edge of u and the jth edge of v
coincide then draw and edge between (u, i) and (v , j)).

Add enough loops at every point to make it a d16 − 3 regular graph.
This does not change connectivity.

We now return to the intuition behind Reingold-Vadhan-Wigderson.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 18 / 20

Crossing t’s

We have solved the problem for graphs G which which are d16-regular,
and none of whose components are bipartite. What about general graphs?

First, we reduce to the 3-regular case: for a general graph G , create
G ′ by replacing a vertex v with a cycle of length of deg(v), and edges
of G by matchings (that is, if the ith edge of u and the jth edge of v
coincide then draw and edge between (u, i) and (v , j)).

Add enough loops at every point to make it a d16 − 3 regular graph.
This does not change connectivity.

We now return to the intuition behind Reingold-Vadhan-Wigderson.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 18 / 20

Crossing t’s

We have solved the problem for graphs G which which are d16-regular,
and none of whose components are bipartite. What about general graphs?

First, we reduce to the 3-regular case: for a general graph G , create
G ′ by replacing a vertex v with a cycle of length of deg(v), and edges
of G by matchings (that is, if the ith edge of u and the jth edge of v
coincide then draw and edge between (u, i) and (v , j)).

Add enough loops at every point to make it a d16 − 3 regular graph.
This does not change connectivity.

We now return to the intuition behind Reingold-Vadhan-Wigderson.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 18 / 20

Why is G©z H a good expander?

There are two basic intuitions, both of which can be converted into
(somewhat technical) proofs:

1 H is a low-degree good expander, so it can be thought of as a good
approximation to the regular graph. Thus, H ≈ Km. Then,
G©z H ≈ G ⊗ Km, and this tells us that G©z H must have better
expansion than G .

2 Alternatively, if a random walk on G©z H has not converged to the
stationary distribution, then we have two extremal cases:

The probability is well distributed among clouds, but are badly
distributed within each cloud. In this case, each step will use zigs, thus
improving the distribution within each cloud, while the zag will only
permute the total density on each cloud.
Each cloud is well-distributed, but the probability is badly distributed
among clouds. In this case, the zigs will not change the distribution
within each cloud, while the zag will improve distribution among the
clouds.
The general case is a superposition of the above two extremes.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 19 / 20

Why is G©z H a good expander?

There are two basic intuitions, both of which can be converted into
(somewhat technical) proofs:

1 H is a low-degree good expander, so it can be thought of as a good
approximation to the regular graph. Thus, H ≈ Km. Then,
G©z H ≈ G ⊗ Km, and this tells us that G©z H must have better
expansion than G .

2 Alternatively, if a random walk on G©z H has not converged to the
stationary distribution, then we have two extremal cases:

The probability is well distributed among clouds, but are badly
distributed within each cloud. In this case, each step will use zigs, thus
improving the distribution within each cloud, while the zag will only
permute the total density on each cloud.
Each cloud is well-distributed, but the probability is badly distributed
among clouds. In this case, the zigs will not change the distribution
within each cloud, while the zag will improve distribution among the
clouds.
The general case is a superposition of the above two extremes.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 19 / 20

Why is G©z H a good expander?

There are two basic intuitions, both of which can be converted into
(somewhat technical) proofs:

1 H is a low-degree good expander, so it can be thought of as a good
approximation to the regular graph. Thus, H ≈ Km. Then,
G©z H ≈ G ⊗ Km, and this tells us that G©z H must have better
expansion than G .

2 Alternatively, if a random walk on G©z H has not converged to the
stationary distribution, then we have two extremal cases:

The probability is well distributed among clouds, but are badly
distributed within each cloud. In this case, each step will use zigs, thus
improving the distribution within each cloud, while the zag will only
permute the total density on each cloud.
Each cloud is well-distributed, but the probability is badly distributed
among clouds. In this case, the zigs will not change the distribution
within each cloud, while the zag will improve distribution among the
clouds.
The general case is a superposition of the above two extremes.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 19 / 20

Why is G©z H a good expander?

There are two basic intuitions, both of which can be converted into
(somewhat technical) proofs:

1 H is a low-degree good expander, so it can be thought of as a good
approximation to the regular graph. Thus, H ≈ Km. Then,
G©z H ≈ G ⊗ Km, and this tells us that G©z H must have better
expansion than G .

2 Alternatively, if a random walk on G©z H has not converged to the
stationary distribution, then we have two extremal cases:

The probability is well distributed among clouds, but are badly
distributed within each cloud. In this case, each step will use zigs, thus
improving the distribution within each cloud, while the zag will only
permute the total density on each cloud.

Each cloud is well-distributed, but the probability is badly distributed
among clouds. In this case, the zigs will not change the distribution
within each cloud, while the zag will improve distribution among the
clouds.
The general case is a superposition of the above two extremes.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 19 / 20

Why is G©z H a good expander?

There are two basic intuitions, both of which can be converted into
(somewhat technical) proofs:

1 H is a low-degree good expander, so it can be thought of as a good
approximation to the regular graph. Thus, H ≈ Km. Then,
G©z H ≈ G ⊗ Km, and this tells us that G©z H must have better
expansion than G .

2 Alternatively, if a random walk on G©z H has not converged to the
stationary distribution, then we have two extremal cases:

The probability is well distributed among clouds, but are badly
distributed within each cloud. In this case, each step will use zigs, thus
improving the distribution within each cloud, while the zag will only
permute the total density on each cloud.
Each cloud is well-distributed, but the probability is badly distributed
among clouds. In this case, the zigs will not change the distribution
within each cloud, while the zag will improve distribution among the
clouds.

The general case is a superposition of the above two extremes.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 19 / 20

Why is G©z H a good expander?

There are two basic intuitions, both of which can be converted into
(somewhat technical) proofs:

1 H is a low-degree good expander, so it can be thought of as a good
approximation to the regular graph. Thus, H ≈ Km. Then,
G©z H ≈ G ⊗ Km, and this tells us that G©z H must have better
expansion than G .

2 Alternatively, if a random walk on G©z H has not converged to the
stationary distribution, then we have two extremal cases:

The probability is well distributed among clouds, but are badly
distributed within each cloud. In this case, each step will use zigs, thus
improving the distribution within each cloud, while the zag will only
permute the total density on each cloud.
Each cloud is well-distributed, but the probability is badly distributed
among clouds. In this case, the zigs will not change the distribution
within each cloud, while the zag will improve distribution among the
clouds.
The general case is a superposition of the above two extremes.

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 19 / 20

Thank You!

Anurag Sahay (UoR) ustcon ∈ L 27th February, 2020 20 / 20

	Introduction
	Reingold's Theorem: ustconL

	Expander Graphs
	Diameter of an Expander Graph

	Initial Ideas
	Graph Exponentiation
	Tensor Product

	The Zig-Zag Product
	Reingold's Algorithm

