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Notation and Preliminaries

In this talk, we use some notation divergent from [LLR19], in order to
emphasize the probabilistic ideas behind their paper.

We view [T , 2T ] as a probability space with the normalized Lebesgue
measure, which we denote by PT (·).

We write ET (·) for the expectation against that measure. Clearly,

ET [f (t)] =
1

T

∫ 2T

T
f (t) dt

We will use P(·) for probability and E(·) for expectation associated
with other sources of randomness.

Any limit of random variables in this talk will be in the sense of
convergence in distribution.
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How is log ζ(σ + it) distributed for large t?

Fix σ ∈ R. Then the map

t 7→ log ζ(σ + it)

is a C-valued random variable on [T , 2T ].

A classical question in analytic number theory is the following: what is the
distribution of this random variable for large T ?

This question amounts to asking what is the distributional limit as
T →∞ of the random variables

{t 7→ log ζ(σ + it) : t ∈ [T , 2T ]}T>0,

if it exists.
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How is log ζ(σ + it) distributed for large t?

In light of the functional equation, we restrict our discussion to σ ≥ 1/2.

The case σ > 1 is relatively easy, since ζ(s) has a convergent Euler
product and series representation.

The case σ = 1/2 was considered by Selberg, who proved his Central Limit
Theorem: loosely, it says that log |ζ(1/2 + it)| is normally distributed with
mean 0 and variance 1

2 log log T . We will not discuss this further.

Bohr and Jessen [BJ30] showed that if σ > 1/2, then the limiting
distribution exists and is continuous. The main result of [LLR19] is an
estimate on the rate of this convergence in the regime 1/2 < σ ≤ 1.

For simplicity of exposition, we will not consider σ = 1 in this talk,
although the same ideas apply, and are treated in [LLR19].
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Euler Product for the Riemann Zeta Function

For σ > 1, we have the following convergent product formula for the
Riemann zeta function due to to Euler:

ζ(s) =
∏
p

(
1

1− 1
ps

)

Putting s = σ + it, and rearranging a bit, we get that

ζ(σ + it) =
∏
p

(
1

1− p−it

pσ

)
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The Behaviour of p−it

For t ∈ R, we have that n−it ∈ T ⊆ C, for n ∈ N. n−it is clearly
distributed uniformly on T for every n.

What happens when t ∈ [T , 2T ]?

How do these behave individually?

For fixed n, and large T , they are distributed approximately uniformly.

How do they interact for different values of n?

2−it and 4−it?
2−it , 3−it and 6−it?
2−it and 3−it? 5−it and 6−it?

In general there is no reason to expect m−it and n−it to show any
sort of relationship when m and n are coprime.
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The Behaviour of p−it

The heuristic for why m−it and n−it should behave independently when
(m, n) = 1 comes from the following theorem from harmonic analysis:

Theorem (Kronecker-Weyl)

Let θ1, · · · , θn ∈ R be linearly independent over Q. Then the set

{(e(θ1x), · · · , e(θnx) : x ∈ R}

is equidistributed on Tn, where e(·) = e2πi(·) as usual.

Note that {1} ∪ {log p : p prime} is Q-linearly independent – this is the
fundamental theorem of arithmetic. We conclude that any finite subset of
pair-wise coprime integers should behave independently.
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The Definition of the Random Model ζ(σ,X )

This behaviour of p−it as approximately uniform and i.i.d. random
variables on [T , 2T ] leads to the following definition:

Definition (Random Model)

Let X be random variable uniformly taking values in T∞, indexed by the
primes. In other words, X = {X (p)}p is a family of independent random
variables uniformly distributed on the unit circle in C, indexed by the
primes. We define the C-valued random variable ζ(σ,X ) as follows

ζ(σ,X ) =
∏
p

 1

1− X (p)
pσ


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The Random Model ζ(σ,X )

Definition (Random Model)

Let X be random variable uniformly taking values in T∞, indexed by the
primes.Then, we define,

ζ(σ,X ) =
∏
p

 1

1− X (p)
pσ



It can be shown using probabilistic techniques (e.g., the Kolmogorov
3-series theorem or Chernoff-style concentration bounds) that the above
product converges almost surely for σ > 1/2.

Furthermore, for σ > 1/2, ζ(σ,X ) is a C-valued random variable with a
continuous distribution, and Bohr-Jessen’s result [BJ30] is essentially that
{log ζ(σ + it)}t∈[T ,2T ] → log ζ(σ,X ) as T →∞.
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The Discrepancy Between log ζ(σ + it) and log ζ(σ,X )

The limit {log ζ(σ + it)}t∈[T ,2T ] → log ζ(σ,X ) as T →∞ naturally leads
one to the question of how large the discrepancy between the distributions
of true log ζ and the the random model get for a fixed T .

Definition (Discrepancy)

Let σ > 1/2 be fixed, and T be large. Then,

Dσ(T ) = sup
R
|PT (log ζ(σ + it) ∈ R)− P (log ζ(σ,X ) ∈ R)|

where the supremum runs over all axis-parallel rectangles R ⊆ C.

Clearly, the Bohr-Jessen result is Dσ(T ) = o(1).
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The Discrepancy Between log ζ(σ + it) and log ζ(σ,X )

Lamzouri, Lester and Radziwi l l prove the following bound:

Theorem

Let 1/2 < σ < 1 be fixed. Then

Dσ(T )�σ
1

(log T )σ
.

This improves on an earlier bound by Harman and Matsumoto.
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The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function Φξ(x) is given by

Φξ(x) = E
(

e ixξ
)
.

The characteristic function is similar to the moment generating function
Mξ(x) = E(exξ) but with the advantage that Φξ always exists for x ∈ R,
even though the moment generating function need not.

If F (u) = P(ξ ≤ u) is the distibution function of ξ on R, then clearly,

Φξ(x) =

∫ ∞
−∞

e ixudF (u)

and so Φξ is just the Fourier transform of the measure dF .
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The Characteristic Function of a Random Variable

When working with complex random variables ξ, the domain is extended
to z ∈ C, and the definition is changed to

Φξ(z) = E
(

e i Re zξ
)

Thinking of z = u + iv , and of Φξ as a function of two real variables, this
is the same as saying

Φξ(u, v) = E
(

e i(u Re ξ+v Im ξ)
)
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The Characteristic Function of log ζ

This leads us to the following two definitions:

Definition (Characteristic Function of log ζ(σ,X ))

Let σ > 1/2 be fixed. Then, we define

Φr
σ(u, v) = E (exp (iu Re log ζ(σ,X ) + iv Im log ζ(σ,X ))) .

Definition (Characteristic Function of log ζ(σ + it))

Let σ > 1/2 and T large be fixed. Then, we define

Φσ,T (u, v) = ET (exp (iu Re log ζ(σ + it) + iv Im log ζ(σ + it)))

=
1

T

∫ 2T

T
exp (iu Re log ζ(σ + it) + iv Im log ζ(σ + it)) dt.
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Motivation: Lévy’s Convergence Theorem

The motivation for considering the characteristic function of log ζ comes
from the following theorem from probability:

Theorem (Lévy’s Convergence Theorem)

Let Xn be a sequence of Rn-valued random variables, and X be an
Rn-valued random variable, with corresponding characteristic functions Φn

and Φ. Then,

Xn → X in distribution ⇐⇒ Φn → Φ pointwise.

Hence, to find the distributional discrepancy in log ζ, one looks for
pointwise estimates for the characteristic functions.
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Approximating Φσ,T by Φr
σ

We have the following theorem that tells us that these characteristic
functions are not too far apart:

Theorem

Let 1/2 < σ < 1 and A ≥ 1 be fixed. There exists a constant b = b(σ,A)
such that for all |u|, |v | ≤ b(log T )σ, we have

Φσ,T (u, v) = Φr
σ(u, v) +O

(
1

(log T )A

)
.
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Approximating Φσ,T by Φr
σ: High Level Proof Idea

Proof Idea.

Let Y ≥ 0 be a real number, and define the Dirichlet polynomial
RY (σ + it) by

RY (σ + it) =
∑
n≤Y

Λ(n)

nσ+it log n
=
∑
pk≤Y

1

kpk(σ+it)

Correspondingly, we define the random Dirichlet polynomial by

RY (σ,X ) =
∑
n≤Y

Λ(n)X (n)

nσ log n
=
∑
pk≤Y

X (p)k

kpkσ
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Approximating Φσ,T by Φr
σ: High Level Proof Idea

Proof Idea.

Then, one can show that for u, v �σ,A (log T )σ,

Φσ,T (u, v) = ET (exp (iu Re log ζ(σ + it) + iv Im log ζ(σ + it)))

≈ ET (exp (iu Re RY (σ + it) + iv Im RY (σ + it)))

≈ E (exp (iu Re RY (σ,X ) + iv Im RY (σ,X )))

≈ E (exp (iu Re log ζ(σ,X ) + iv Im log ζ(σ,X )))

= Φr
σ(u, v).

Here ≈ means up to an acceptable error.
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Beurling-Selberg Functions

Beurling-Selberg functions are a major tool in analytic number theory,
which essentially arise as smoothed approximations to cutoff functions
with prescribed Fourier support.

Lemma (Beurling-Selberg functions for a rectangle)

Let R be an axis-parallel rectangle in C, and L > 0 be a real number. For
any z ∈ C we have

1R(z) = WL,R(z) + EL,R(z)

where WL,R(z) is smooth, and

EL,R(z)� (sincπLθz)2

with sinc x = sin x
x , and θz is the biggest among the distances of z from the

sides of R.
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Extracting the Discrepancy Bound

Proof Idea.

Uniformly for axis-parallel rectangles R, we want to bound

DRσ (T ) =
∣∣∣PT (log ζ(σ + it) ∈ R)− P(log ζ(σ,X ) ∈ R)

∣∣∣.

We can rewrite this as the magnitude of

ET

[
1R(log ζ(σ + it)

]
− E

[
1R(log ζ(σ,X )

]
≈ ET

[
WL,R(log ζ(σ + it)

]
− E

[
WL,R(log ζ(σ,X )

]
where the error term ET

[
EL,R(log ζ(σ + it)

]
− E

[
EL,R(log ζ(σ,X )

]
can

be shown to be � 1/L.
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Extracting the Discrepancy Bound

Proof Idea.

Explicitly, for z = x + iy , we have that WL,R(z) is given by

Re

∫ L

0

∫ L

0

G
(
u
L

)
G
(
v
L

)
(e(ux − vy)f1,R(u, v)− e(ux + vy)f2,R(u, v))

2uv
dudv

where G is bounded on [0, 1], and fj ,R(u, v)� µ(R)uv .

It follows that

E
[
WL,R(log ζ)

]
is given by the real part of

∫ L

0

∫ L

0

G
(
u
L

)
G
(
v
L

)
(Φ(2πu,−2πv)f1,R(u, v)− Φ(2πu, 2πv)f2,R(u, v))

2uv
dudv
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Extracting the Discrepancy Bound

Proof Idea.

From this, together with our estimate for characteristic functions we
conclude that

ET

[
WL,R(log ζ(σ + it)

]
− E

[
WL,R(log ζ(σ,X )

]
�σ,A

L2µ(R)

(log T )A

provided that L�σ,A (log T )σ.

In particular, choosing A large and
L �σ,A (log T )σ, we see that

DRσ (T )�σ,A
1

(log T )σ
+

µ(R)

(log T )A−2σ
.

To establish the theorem we need to remove the dependence on R. This
can be done by appealing to a large deviation estimate – morally this says
that the extremal R maximising DRσ (T ) satisfies R ⊆ [− log2 T , log2 T ]2,
completing the proof.
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The End
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