Discrepancy Bounds for the Riemann Zeta Function

Anurag Sahay
PhD Oral Exam
University of Rochester
asahay@ur.rochester.edu
4th December 2020

References

R
Youness Lamzouri, Stephen Lester, and Maksym Radziwitt.
Discrepancy bounds for the distribution of the Riemann zeta-function and applications.
J. Anal. Math., 139(2):453-494, 2019.

围
Harald Bohr and Börge Jessen,
Über die Werteverteilung der Riemannschen Zetafunktion, erste Mitteilung.
Acta Math. 54 (1930), no. 1, 1-35. MR1555301
目
E.C. Titchmarsh and D.R. Heath-Brown.

The theory of the Riemann zeta-function.
Oxford University Press, 1986.

Overview of the Talk

(1) Introduction

- The Limiting Distribution of $\log \zeta(s)$
- Euler Product for the Riemann Zeta Function
- The Random Model for the Riemann Zeta Function

(2) Main Results

- Discrepancy for log ζ
- The Characteristic Function
(3) Sketch of the Proof
- Approximating Characteristic Functions
- Beurling-Selberg Functions
- Concluding the Discrepancy Bound

Notation and Preliminaries

In this talk, we use some notation divergent from [LLR19], in order to emphasize the probabilistic ideas behind their paper.

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.

Notation and Preliminaries

In this talk, we use some notation divergent from [LLR19], in order to emphasize the probabilistic ideas behind their paper.

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.
- We write $\mathbb{E}_{T}(\cdot)$ for the expectation against that measure. Clearly,

$$
\mathbb{E}_{T}[f(t)]=\frac{1}{T} \int_{T}^{2 T} f(t) d t
$$

Notation and Preliminaries

In this talk, we use some notation divergent from [LLR19], in order to emphasize the probabilistic ideas behind their paper.

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.
- We write $\mathbb{E}_{T}(\cdot)$ for the expectation against that measure. Clearly,

$$
\mathbb{E}_{T}[f(t)]=\frac{1}{T} \int_{T}^{2 T} f(t) d t
$$

- We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.

Notation and Preliminaries

In this talk, we use some notation divergent from [LLR19], in order to emphasize the probabilistic ideas behind their paper.

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.
- We write $\mathbb{E}_{T}(\cdot)$ for the expectation against that measure. Clearly,

$$
\mathbb{E}_{T}[f(t)]=\frac{1}{T} \int_{T}^{2 T} f(t) d t
$$

- We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.
- Any limit of random variables in this talk will be in the sense of convergence in distribution.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

Fix $\sigma \in \mathbb{R}$. Then the map

$$
t \mapsto \log \zeta(\sigma+i t)
$$

is a \mathbb{C}-valued random variable on $[T, 2 T]$.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

Fix $\sigma \in \mathbb{R}$. Then the map

$$
t \mapsto \log \zeta(\sigma+i t)
$$

is a \mathbb{C}-valued random variable on $[T, 2 T]$.

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T ?

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

Fix $\sigma \in \mathbb{R}$. Then the map

$$
t \mapsto \log \zeta(\sigma+i t)
$$

is a \mathbb{C}-valued random variable on $[T, 2 T]$.

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T ?

This question amounts to asking what is the distributional limit as $T \rightarrow \infty$ of the random variables

$$
\{t \mapsto \log \zeta(\sigma+i t): t \in[T, 2 T]\}_{T>0},
$$

if it exists.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we restrict our discussion to $\sigma \geq 1 / 2$.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we restrict our discussion to $\sigma \geq 1 / 2$.

The case $\sigma>1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we restrict our discussion to $\sigma \geq 1 / 2$.
The case $\sigma>1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

The case $\sigma=1 / 2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\log |\zeta(1 / 2+i t)|$ is normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we restrict our discussion to $\sigma \geq 1 / 2$.
The case $\sigma>1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

The case $\sigma=1 / 2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\log |\zeta(1 / 2+i t)|$ is normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further.

Bohr and Jessen [BJ30] showed that if $\sigma>1 / 2$, then the limiting distribution exists and is continuous. The main result of [LLR19] is an estimate on the rate of this convergence in the regime $1 / 2<\sigma \leq 1$.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we restrict our discussion to $\sigma \geq 1 / 2$.
The case $\sigma>1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

The case $\sigma=1 / 2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\log |\zeta(1 / 2+i t)|$ is normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further.

Bohr and Jessen [BJ30] showed that if $\sigma>1 / 2$, then the limiting distribution exists and is continuous. The main result of [LLR19] is an estimate on the rate of this convergence in the regime $1 / 2<\sigma \leq 1$.

For simplicity of exposition, we will not consider $\sigma=1$ in this talk, although the same ideas apply, and are treated in [LLR19].

Euler Product for the Riemann Zeta Function

For $\sigma>1$, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$
\zeta(s)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)
$$

Euler Product for the Riemann Zeta Function

For $\sigma>1$, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$
\zeta(s)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)
$$

Putting $s=\sigma+i t$, and rearranging a bit, we get that

$$
\zeta(\sigma+i t)=\prod_{p}\left(\frac{1}{1-\frac{p^{-i t}}{p^{\sigma}}}\right)
$$

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?
- $2^{-i t}$ and $3^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?
- $2^{-i t}$ and $3^{-i t}$? $5^{-i t}$ and $6^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?
- $2^{-i t}$ and $3^{-i t}$? $5^{-i t}$ and $6^{-i t}$?

In general there is no reason to expect $m^{-i t}$ and $n^{-i t}$ to show any sort of relationship when m and n are coprime.

The Behaviour of $p^{-i t}$

The heuristic for why $m^{-i t}$ and $n^{-i t}$ should behave independently when $(m, n)=1$ comes from the following theorem from harmonic analysis:

Theorem (Kronecker-Weyl)

Let $\theta_{1}, \cdots, \theta_{n} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. Then the set

$$
\left\{\left(e\left(\theta_{1} x\right), \cdots, e\left(\theta_{n} x\right): x \in \mathbb{R}\right\}\right.
$$

is equidistributed on \mathbb{T}^{n}, where $e(\cdot)=e^{2 \pi i(\cdot)}$ as usual.
Note that $\{1\} \cup\{\log p: p$ prime $\}$ is \mathbb{Q}-linearly independent - this is the fundamental theorem of arithmetic. We conclude that any finite subset of pair-wise coprime integers should behave independently.

The Definition of the Random Model $\zeta(\sigma, X)$

This behaviour of $p^{-i t}$ as approximately uniform and i.i.d. random variables on $[T, 2 T]$ leads to the following definition:

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. In other words, $X=\{X(p)\}_{p}$ is a family of independent random variables uniformly distributed on the unit circle in \mathbb{C}, indexed by the primes. We define the \mathbb{C}-valued random variable $\zeta(\sigma, X)$ as follows

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

The Random Model $\zeta(\sigma, X)$

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. Then, we define,

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

The Random Model $\zeta(\sigma, X)$

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. Then, we define,

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma>1 / 2$.

The Random Model $\zeta(\sigma, X)$

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. Then, we define,

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma>1 / 2$.

Furthermore, for $\sigma>1 / 2, \zeta(\sigma, X)$ is a \mathbb{C}-valued random variable with a continuous distribution, and Bohr-Jessen's result [BJ30] is essentially that $\{\log \zeta(\sigma+i t)\}_{t \in[T, 2 T]} \rightarrow \log \zeta(\sigma, X)$ as $T \rightarrow \infty$.

The Discrepancy Between $\log \zeta(\sigma+i t)$ and $\log \zeta(\sigma, X)$

The limit $\{\log \zeta(\sigma+i t)\}_{t \in[T, 2 T]} \rightarrow \log \zeta(\sigma, X)$ as $T \rightarrow \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

The Discrepancy Between $\log \zeta(\sigma+i t)$ and $\log \zeta(\sigma, X)$

The limit $\{\log \zeta(\sigma+i t)\}_{t \in[T, 2 T]} \rightarrow \log \zeta(\sigma, X)$ as $T \rightarrow \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

Definition (Discrepancy)

Let $\sigma>1 / 2$ be fixed, and T be large. Then,

$$
\mathcal{D}_{\sigma}(T)=\sup _{\mathcal{R}}\left|\mathbb{P}_{T}(\log \zeta(\sigma+i t) \in \mathcal{R})-\mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R})\right|
$$

where the supremum runs over all axis-parallel rectangles $\mathcal{R} \subseteq \mathbb{C}$.
Clearly, the Bohr-Jessen result is $D_{\sigma}(T)=o(1)$.

The Discrepancy Between $\log \zeta(\sigma+i t)$ and $\log \zeta(\sigma, X)$

Lamzouri, Lester and Radziwiłł prove the following bound:

Theorem

Let $1 / 2<\sigma<1$ be fixed. Then

$$
D_{\sigma}(T) \ll_{\sigma} \frac{1}{(\log T)^{\sigma}} .
$$

This improves on an earlier bound by Harman and Matsumoto.

The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function $\Phi_{\xi}(x)$ is given by

$$
\Phi_{\xi}(x)=\mathbb{E}\left(e^{i x \xi}\right) .
$$

The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function $\Phi_{\xi}(x)$ is given by

$$
\Phi_{\xi}(x)=\mathbb{E}\left(e^{i x \xi}\right) .
$$

The characteristic function is similar to the moment generating function $M_{\xi}(x)=\mathbb{E}\left(e^{x \xi}\right)$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function $\Phi_{\xi}(x)$ is given by

$$
\Phi_{\xi}(x)=\mathbb{E}\left(e^{i x \xi}\right) .
$$

The characteristic function is similar to the moment generating function $M_{\xi}(x)=\mathbb{E}\left(e^{x \xi}\right)$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

If $F(u)=\mathbb{P}(\xi \leq u)$ is the distibution function of ξ on \mathbb{R}, then clearly,

$$
\Phi_{\xi}(x)=\int_{-\infty}^{\infty} e^{i x u} d F(u)
$$

and so Φ_{ξ} is just the Fourier transform of the measure $d F$.

The Characteristic Function of a Random Variable

When working with complex random variables ξ, the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$
\Phi_{\xi}(z)=\mathbb{E}\left(e^{i \operatorname{Re} \bar{z} \xi}\right)
$$

The Characteristic Function of a Random Variable

When working with complex random variables ξ, the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$
\Phi_{\xi}(z)=\mathbb{E}\left(e^{i \operatorname{Re} \bar{z} \xi}\right)
$$

Thinking of $z=u+i v$, and of Φ_{ξ} as a function of two real variables, this is the same as saying

$$
\Phi_{\xi}(u, v)=\mathbb{E}\left(e^{i(u \operatorname{Re} \xi+v \operatorname{lm} \xi)}\right)
$$

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:
Definition (Characteristic Function of $\log \zeta(\sigma, X)$)
Let $\sigma>1 / 2$ be fixed. Then, we define

$$
\Phi_{\sigma}^{r}(u, v)=\mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{lm} \log \zeta(\sigma, X)))
$$

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:

Definition (Characteristic Function of $\log \zeta(\sigma, X)$)

Let $\sigma>1 / 2$ be fixed. Then, we define

$$
\Phi_{\sigma}^{r}(u, v)=\mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{lm} \log \zeta(\sigma, X))) .
$$

Definition (Characteristic Function of $\log \zeta(\sigma+i t)$)

Let $\sigma>1 / 2$ and T large be fixed. Then, we define

$$
\Phi_{\sigma, T}(u, v)=\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t)))
$$

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:

Definition (Characteristic Function of $\log \zeta(\sigma, X)$)

Let $\sigma>1 / 2$ be fixed. Then, we define

$$
\Phi_{\sigma}^{r}(u, v)=\mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{lm} \log \zeta(\sigma, X))) .
$$

Definition (Characteristic Function of $\log \zeta(\sigma+i t)$)

Let $\sigma>1 / 2$ and T large be fixed. Then, we define

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{\boldsymbol{T}}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& =\frac{1}{T} \int_{T}^{2 T} \exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t)) d t
\end{aligned}
$$

Motivation: Lévy's Convergence Theorem

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_{n} be a sequence of \mathbb{R}^{n}-valued random variables, and X be an \mathbb{R}^{n}-valued random variable, with corresponding characteristic functions Φ_{n} and Φ. Then,

$$
X_{n} \rightarrow X \text { in distribution } \Longleftrightarrow \Phi_{n} \rightarrow \Phi \text { pointwise. }
$$

Motivation: Lévy's Convergence Theorem

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_{n} be a sequence of \mathbb{R}^{n}-valued random variables, and X be an \mathbb{R}^{n}-valued random variable, with corresponding characteristic functions Φ_{n} and Φ. Then,

$$
X_{n} \rightarrow X \text { in distribution } \Longleftrightarrow \Phi_{n} \rightarrow \Phi \text { pointwise. }
$$

Hence, to find the distributional discrepancy in $\log \zeta$, one looks for pointwise estimates for the characteristic functions.

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r}

We have the following theorem that tells us that these characteristic functions are not too far apart:

Theorem

Let $1 / 2<\sigma<1$ and $A \geq 1$ be fixed. There exists a constant $b=b(\sigma, A)$ such that for all $|u|,|v| \leq b(\log T)^{\sigma}$, we have

$$
\Phi_{\sigma, T}(u, v)=\Phi_{\sigma}^{r}(u, v)+\mathcal{O}\left(\frac{1}{(\log T)^{A}}\right)
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Let $Y \geq 0$ be a real number, and define the Dirichlet polynomial $R_{Y}(\sigma+i t)$ by

$$
R_{Y}(\sigma+i t)=\sum_{n \leq Y} \frac{\Lambda(n)}{n^{\sigma+i t} \log n}=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Let $Y \geq 0$ be a real number, and define the Dirichlet polynomial $R_{Y}(\sigma+i t)$ by

$$
R_{Y}(\sigma+i t)=\sum_{n \leq Y} \frac{\Lambda(n)}{n^{\sigma+i t} \log n}=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}
$$

Correspondingly, we define the random Dirichlet polynomial by

$$
R_{Y}(\sigma, X)=\sum_{n \leq Y} \frac{\Lambda(n) X(n)}{n^{\sigma} \log n}=\sum_{p^{k} \leq Y} \frac{X(p)^{k}}{k p^{k \sigma}}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\Phi_{\sigma, T}(u, v)=\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{Im} \log \zeta(\sigma+i t)))
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{lm} R_{Y}(\sigma+i t)\right)\right)
\end{aligned}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{Im} R_{Y}(\sigma+i t)\right)\right) \\
& \approx \mathbb{E}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma, X)+i v \operatorname{Im} R_{Y}(\sigma, X)\right)\right)
\end{aligned}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{lm} R_{Y}(\sigma+i t)\right)\right) \\
& \approx \mathbb{E}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma, X)+i v \operatorname{lm} R_{Y}(\sigma, X)\right)\right) \\
& \approx \mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{Im} \log \zeta(\sigma, X)))
\end{aligned}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{Im} R_{Y}(\sigma+i t)\right)\right) \\
& \approx \mathbb{E}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma, X)+i v \operatorname{lm} R_{Y}(\sigma, X)\right)\right) \\
& \approx \mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{Im} \log \zeta(\sigma, X))) \\
& =\Phi_{\sigma}^{r}(u, v) .
\end{aligned}
$$

Here \approx means up to an acceptable error.

Beurling-Selberg Functions

Beurling-Selberg functions are a major tool in analytic number theory, which essentially arise as smoothed approximations to cutoff functions with prescribed Fourier support.

Beurling-Selberg Functions

Beurling-Selberg functions are a major tool in analytic number theory, which essentially arise as smoothed approximations to cutoff functions with prescribed Fourier support.

Lemma (Beurling-Selberg functions for a rectangle)

Let \mathcal{R} be an axis-parallel rectangle in \mathbb{C}, and $L>0$ be a real number. For any $z \in \mathbb{C}$ we have

$$
1_{\mathcal{R}}(z)=W_{L, \mathcal{R}}(z)+E_{L, \mathcal{R}}(z)
$$

where $W_{L, \mathcal{R}}(z)$ is smooth, and

$$
E_{L, \mathcal{R}}(z) \ll\left(\operatorname{sinc} \pi L \theta_{z}\right)^{2}
$$

with $\operatorname{sinc} x=\frac{\sin x}{x}$, and θ_{z} is the biggest among the distances of z from the sides of \mathcal{R}.

Extracting the Discrepancy Bound

Proof Idea.

Uniformly for axis-parallel rectangles \mathcal{R}, we want to bound

$$
D_{\sigma}^{\mathcal{R}}(T)=\left|\mathbb{P}_{T}(\log \zeta(\sigma+i t) \in \mathcal{R})-\mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R})\right|
$$

Extracting the Discrepancy Bound

Proof Idea.

Uniformly for axis-parallel rectangles \mathcal{R}, we want to bound

$$
D_{\sigma}^{\mathcal{R}}(T)=\left|\mathbb{P}_{T}(\log \zeta(\sigma+i t) \in \mathcal{R})-\mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R})\right|
$$

We can rewrite this as the magnitude of

$$
\mathbb{E}_{\boldsymbol{T}}\left[1_{\mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[1_{\mathcal{R}}(\log \zeta(\sigma, X)]\right.\right.
$$

Extracting the Discrepancy Bound

Proof Idea.

Uniformly for axis-parallel rectangles \mathcal{R}, we want to bound

$$
D_{\sigma}^{\mathcal{R}}(T)=\left|\mathbb{P}_{T}(\log \zeta(\sigma+i t) \in \mathcal{R})-\mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R})\right|
$$

We can rewrite this as the magnitude of

$$
\begin{aligned}
& \mathbb{E}_{T}\left[1_{\mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[1_{\mathcal{R}}(\log \zeta(\sigma, X)]\right.\right. \\
\approx & \mathbb{E}_{T}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma, X)]\right.\right.
\end{aligned}
$$

where the error term $\mathbb{E}_{T}\left[E_{L, \mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[E_{L, \mathcal{R}}(\log \zeta(\sigma, X)]\right.\right.$ can be shown to be $\ll 1 / L$.

Extracting the Discrepancy Bound

Proof Idea.

Explicitly, for $z=x+i y$, we have that $W_{L, \mathcal{R}}(z)$ is given by

$$
\operatorname{Re} \int_{0}^{L} \int_{0}^{L} \frac{G\left(\frac{u}{L}\right) G\left(\frac{v}{L}\right)\left(e(u x-v y) f_{1, \mathcal{R}}(u, v)-e(u x+v y) f_{2, \mathcal{R}}(u, v)\right)}{2 u v} d u d v
$$

where G is bounded on $[0,1]$, and $f_{j, \mathcal{R}}(u, v) \ll \mu(\mathcal{R}) u v$.

Extracting the Discrepancy Bound

Proof Idea.

Explicitly, for $z=x+i y$, we have that $W_{L, \mathcal{R}}(z)$ is given by

$$
\operatorname{Re} \int_{0}^{L} \int_{0}^{L} \frac{G\left(\frac{u}{L}\right) G\left(\frac{v}{L}\right)\left(e(u x-v y) f_{1, \mathcal{R}}(u, v)-e(u x+v y) f_{2, \mathcal{R}}(u, v)\right)}{2 u v} d u d v
$$

where G is bounded on $[0,1]$, and $f_{j, \mathcal{R}}(u, v) \ll \mu(\mathcal{R}) u v$. It follows that $\mathbb{E}\left[W_{L, \mathcal{R}}(\log \zeta)\right]$ is given by the real part of
$\int_{0}^{L} \int_{0}^{L} \frac{G\left(\frac{u}{L}\right) G\left(\frac{v}{L}\right)\left(\Phi(2 \pi u,-2 \pi v) f_{1, \mathcal{R}}(u, v)-\Phi(2 \pi u, 2 \pi v) f_{2, \mathcal{R}}(u, v)\right)}{2 u v} d u d v$

Extracting the Discrepancy Bound

Proof Idea.

From this, together with our estimate for characteristic functions we conclude that

$$
\mathbb{E}_{T}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma, X)]<_{\sigma, A} \frac{L^{2} \mu(\mathcal{R})}{(\log T)^{A}}\right.\right.
$$

provided that $L<_{\sigma, A}(\log T)^{\sigma}$.

Extracting the Discrepancy Bound

Proof Idea.

From this, together with our estimate for characteristic functions we conclude that

$$
\mathbb{E}_{T}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma, X)]<_{\sigma, A} \frac{L^{2} \mu(\mathcal{R})}{(\log T)^{A}}\right.\right.
$$

provided that $L<_{\sigma, A}(\log T)^{\sigma}$. In particular, choosing A large and $L \asymp{ }_{\sigma, A}(\log T)^{\sigma}$, we see that

$$
D_{\sigma}^{\mathcal{R}}(T)<_{\sigma, A} \frac{1}{(\log T)^{\sigma}}+\frac{\mu(\mathcal{R})}{(\log T)^{A-2 \sigma}} .
$$

Extracting the Discrepancy Bound

Proof Idea.

From this, together with our estimate for characteristic functions we conclude that

$$
\mathbb{E}_{T}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma+i t)]-\mathbb{E}\left[W_{L, \mathcal{R}}(\log \zeta(\sigma, X)]<_{\sigma, A} \frac{L^{2} \mu(\mathcal{R})}{(\log T)^{A}}\right.\right.
$$

provided that $L<_{\sigma, A}(\log T)^{\sigma}$. In particular, choosing A large and $L \asymp_{\sigma, A}(\log T)^{\sigma}$, we see that

$$
D_{\sigma}^{\mathcal{R}}(T) \ll_{\sigma, A} \frac{1}{(\log T)^{\sigma}}+\frac{\mu(\mathcal{R})}{(\log T)^{A-2 \sigma}} .
$$

To establish the theorem we need to remove the dependence on \mathcal{R}. This can be done by appealing to a large deviation estimate - morally this says that the extremal \mathcal{R} maximising $D_{\sigma}^{\mathcal{R}}(T)$ satisfies $\mathcal{R} \subseteq\left[-\log _{2} T, \log _{2} T\right]^{2}$, completing the proof.

The End

