Discrepancy Bounds for the Riemann Zeta Function

Anurag Sahay

PhD Oral Exam University of Rochester

asahay@ur.rochester.edu

4th December 2020

Anurag Sahay (UoR)

Discrepancy Bounds for ζ

4th December 2020 1 / 25

Youness Lamzouri, Stephen Lester, and Maksym Radziwiłł.

Discrepancy bounds for the distribution of the Riemann zeta-function and applications.

J. Anal. Math., 139(2):453-494, 2019.

Harald Bohr and Börge Jessen,

Über die Werteverteilung der Riemannschen Zetafunktion, erste Mitteilung. Acta Math. 54 (1930), no. 1, 1–35. MR1555301

E.C. Titchmarsh and D.R. Heath-Brown. *The theory of the Riemann zeta-function*. Oxford University Press, 1986.

Overview of the Talk

Introduction

- The Limiting Distribution of $\log \zeta(s)$
- Euler Product for the Riemann Zeta Function
- The Random Model for the Riemann Zeta Function

2 Main Results

- Discrepancy for $\log \zeta$
- The Characteristic Function

Sketch of the Proof

- Approximating Characteristic Functions
- Beurling-Selberg Functions
- Concluding the Discrepancy Bound

We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).

- We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).
- We write $\mathbb{E}_{\mathcal{T}}(\cdot)$ for the expectation against that measure. Clearly,

$$\mathbb{E}_{T}[f(t)] = \frac{1}{T} \int_{T}^{2T} f(t) dt$$

- We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).
- We write $\mathbb{E}_{\mathcal{T}}(\cdot)$ for the expectation against that measure. Clearly,

$$\mathbb{E}_T[f(t)] = \frac{1}{T} \int_T^{2T} f(t) \, dt$$

• We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.

- We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).
- We write $\mathbb{E}_{\mathcal{T}}(\cdot)$ for the expectation against that measure. Clearly,

$$\mathbb{E}_T[f(t)] = \frac{1}{T} \int_T^{2T} f(t) \, dt$$

- We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.
- Any limit of random variables in this talk will be in the sense of convergence in distribution.

Fix $\sigma \in \mathbb{R}$. Then the map

$$t \mapsto \log \zeta(\sigma + it)$$

is a \mathbb{C} -valued random variable on [T, 2T].

Fix $\sigma \in \mathbb{R}$. Then the map

$$t \mapsto \log \zeta(\sigma + it)$$

is a \mathbb{C} -valued random variable on [T, 2T].

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T?

Fix $\sigma \in \mathbb{R}$. Then the map

 $t \mapsto \log \zeta(\sigma + it)$

is a \mathbb{C} -valued random variable on [T, 2T].

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T?

This question amounts to asking what is the distributional limit as $T \to \infty$ of the random variables

$${t \mapsto \log \zeta(\sigma + it) : t \in [T, 2T]}_{T>0},$$

if it exists.

In light of the functional equation, we restrict our discussion to $\sigma \ge 1/2$.

In light of the functional equation, we restrict our discussion to $\sigma \ge 1/2$.

The case $\sigma > 1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

In light of the functional equation, we restrict our discussion to $\sigma \ge 1/2$.

The case $\sigma > 1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

The case $\sigma = 1/2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\log |\zeta(1/2 + it)|$ is normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further.

In light of the functional equation, we restrict our discussion to $\sigma \ge 1/2$.

The case $\sigma > 1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

The case $\sigma = 1/2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\log |\zeta(1/2 + it)|$ is normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further.

Bohr and Jessen [BJ30] showed that if $\sigma > 1/2$, then the limiting distribution exists and is continuous. The main result of [LLR19] is an estimate on the rate of this convergence in the regime $1/2 < \sigma \leq 1$.

In light of the functional equation, we restrict our discussion to $\sigma \ge 1/2$.

The case $\sigma > 1$ is relatively easy, since $\zeta(s)$ has a convergent Euler product and series representation.

The case $\sigma = 1/2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\log |\zeta(1/2 + it)|$ is normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further.

Bohr and Jessen [BJ30] showed that if $\sigma > 1/2$, then the limiting distribution exists and is continuous. The main result of [LLR19] is an estimate on the rate of this convergence in the regime $1/2 < \sigma \leq 1$.

For simplicity of exposition, we will not consider $\sigma = 1$ in this talk, although the same ideas apply, and are treated in [LLR19].

For $\sigma>$ 1, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$\zeta(s) = \prod_p \left(rac{1}{1-rac{1}{p^s}}
ight)$$

For $\sigma > 1$, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$\zeta(s) = \prod_p \left(rac{1}{1-rac{1}{p^s}}
ight)$$

Putting $s = \sigma + it$, and rearranging a bit, we get that

$$\zeta(\sigma + it) = \prod_{\rho} \left(\frac{1}{1 - \frac{p^{-it}}{\rho^{\sigma}}} \right)$$

Anurag Sahay (UoR)

What happens when $t \in [T, 2T]$?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

What happens when $t \in [T, 2T]$?

- How do these behave individually?
 - For fixed *n*, and large *T*, they are distributed approximately uniformly.

What happens when $t \in [T, 2T]$?

- How do these behave individually?
 - For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?
 - 2^{-it} and 4^{-it} ?

What happens when $t \in [T, 2T]$?

- How do these behave individually?
 - For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?

• $2^{-it}, 3^{-it}$ and 6^{-it} ?

What happens when $t \in [T, 2T]$?

- How do these behave individually?
 - For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?

•
$$2^{-it}, 3^{-it}$$
 and 6^{-it} ?

• 2^{-it} and 3^{-it} ?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

• For fixed n, and large T, they are distributed approximately uniformly.

• How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?
• 2^{-it} , 3^{-it} and 6^{-it} ?

•
$$2^{-it}$$
 and 3^{-it} ? 5^{-it} and 6^{-it} ?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

- For fixed *n*, and large *T*, they are distributed approximately uniformly.
- How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?

•
$$2^{-it}, 3^{-it}$$
 and 6^{-it} ?

•
$$2^{-it}$$
 and 3^{-it} ? 5^{-it} and 6^{-it} ?

In general there is no reason to expect m^{-it} and n^{-it} to show any sort of relationship when m and n are coprime.

The heuristic for why m^{-it} and n^{-it} should behave independently when (m, n) = 1 comes from the following theorem from harmonic analysis:

Theorem (Kronecker-Weyl)

Let $\theta_1, \cdots, \theta_n \in \mathbb{R}$ be linearly independent over \mathbb{Q} . Then the set

$$\{(e(\theta_1 x), \cdots, e(\theta_n x) : x \in \mathbb{R}\}$$

is equidistributed on \mathbb{T}^n , where $e(\cdot) = e^{2\pi i(\cdot)}$ as usual.

Note that $\{1\} \cup \{\log p : p \text{ prime}\}\$ is \mathbb{Q} -linearly independent – this is the fundamental theorem of arithmetic. We conclude that any finite subset of pair-wise coprime integers should behave independently.

This behaviour of p^{-it} as approximately uniform and i.i.d. random variables on [T, 2T] leads to the following definition:

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞} , indexed by the primes. In other words, $X = \{X(p)\}_p$ is a family of independent random variables uniformly distributed on the unit circle in \mathbb{C} , indexed by the primes. We define the \mathbb{C} -valued random variable $\zeta(\sigma, X)$ as follows

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

Anurag Sahay (UoR)

Definition (Random Model)

Let X be random variable uniformly taking values in $\mathbb{T}^\infty,$ indexed by the primes.Then, we define,

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

Definition (Random Model)

Let X be random variable uniformly taking values in $\mathbb{T}^\infty,$ indexed by the primes.Then, we define,

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma > 1/2$.

Definition (Random Model)

Let X be random variable uniformly taking values in $\mathbb{T}^\infty,$ indexed by the primes.Then, we define,

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma > 1/2$.

Furthermore, for $\sigma > 1/2$, $\zeta(\sigma, X)$ is a \mathbb{C} -valued random variable with a continuous distribution, and Bohr-Jessen's result [BJ30] is essentially that $\{\log \zeta(\sigma + it)\}_{t \in [T, 2T]} \rightarrow \log \zeta(\sigma, X) \text{ as } T \rightarrow \infty.$

The limit $\{\log \zeta(\sigma + it)\}_{t \in [T,2T]} \to \log \zeta(\sigma, X) \text{ as } T \to \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

The limit $\{\log \zeta(\sigma + it)\}_{t \in [T,2T]} \to \log \zeta(\sigma, X) \text{ as } T \to \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

Definition (Discrepancy)

Let $\sigma > 1/2$ be fixed, and T be large. Then,

$$\mathcal{D}_{\sigma}(\mathcal{T}) = \sup_{\mathcal{R}} \left| \mathbb{P}_{\mathcal{T}}\left(\log \zeta(\sigma + it) \in \mathcal{R}
ight) - \mathbb{P}\left(\log \zeta(\sigma, X) \in \mathcal{R}
ight)
ight|$$

where the supremum runs over all axis-parallel rectangles $\mathcal{R}\subseteq\mathbb{C}.$

Clearly, the Bohr-Jessen result is $D_{\sigma}(T) = o(1)$.

Lamzouri, Lester and Radziwiłł prove the following bound:

Theorem

Let $1/2 < \sigma < 1$ be fixed. Then $D_\sigma(\mathcal{T}) \ll_\sigma rac{1}{(\log \mathcal{T})^\sigma}.$

This improves on an earlier bound by Harman and Matsumoto.

For a real random variable ξ , the characteristic function $\Phi_{\xi}(x)$ is given by

$$\Phi_{\xi}(x) = \mathbb{E}\left(e^{ix\xi}\right).$$

For a real random variable ξ , the characteristic function $\Phi_{\xi}(x)$ is given by

$$\Phi_{\xi}(x) = \mathbb{E}\left(e^{ix\xi}\right).$$

The characteristic function is similar to the moment generating function $M_{\xi}(x) = \mathbb{E}(e^{x\xi})$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

For a real random variable ξ , the characteristic function $\Phi_{\xi}(x)$ is given by

$$\Phi_{\xi}(x) = \mathbb{E}\left(e^{ix\xi}\right).$$

The characteristic function is similar to the moment generating function $M_{\xi}(x) = \mathbb{E}(e^{x\xi})$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

If $F(u) = \mathbb{P}(\xi \le u)$ is the distibution function of ξ on \mathbb{R} , then clearly,

$$\Phi_{\xi}(x) = \int_{-\infty}^{\infty} e^{ixu} dF(u)$$

and so Φ_{ξ} is just the Fourier transform of the measure dF.

When working with complex random variables ξ , the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$\Phi_{\xi}(z) = \mathbb{E}\left(e^{i\operatorname{\mathsf{Re}}\overline{z}\xi}\right)$$

When working with complex random variables ξ , the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$\Phi_{\xi}(z) = \mathbb{E}\left(e^{i\operatorname{\mathsf{Re}}\overline{z}\xi}
ight)$$

Thinking of z = u + iv, and of Φ_{ξ} as a function of two real variables, this is the same as saying

$$\Phi_{\xi}(u,v) = \mathbb{E}\left(e^{i(u\operatorname{\mathsf{Re}}\xi+v\operatorname{\mathsf{Im}}\xi)}\right)$$

This leads us to the following two definitions:

This leads us to the following two definitions:

Definition (Characteristic Function of log $\zeta(\sigma, X)$)

Let $\sigma>1/2$ be fixed. Then, we define

 $\Phi_{\sigma}^{r}(u,v) = \mathbb{E}\left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right).$

This leads us to the following two definitions:

Definition (Characteristic Function of log $\zeta(\sigma, X)$)

Let $\sigma>1/2$ be fixed. Then, we define

 $\Phi_{\sigma}^{r}(u,v) = \mathbb{E}\left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right).$

Definition (Characteristic Function of log $\zeta(\sigma + it)$)

Let $\sigma > 1/2$ and T large be fixed. Then, we define

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right)$$

This leads us to the following two definitions:

Definition (Characteristic Function of log $\zeta(\sigma, X)$)

Let $\sigma>1/2$ be fixed. Then, we define

 $\Phi_{\sigma}^{r}(u,v) = \mathbb{E}\left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right).$

Definition (Characteristic Function of log $\zeta(\sigma + it)$)

Let $\sigma > 1/2$ and T large be fixed. Then, we define

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_{T} \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right)$$
$$= \frac{1}{T} \int_{T}^{2T} \exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \, dt.$$

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_n be a sequence of \mathbb{R}^n -valued random variables, and X be an \mathbb{R}^n -valued random variable, with corresponding characteristic functions Φ_n and Φ . Then,

 $X_n \to X$ in distribution $\iff \Phi_n \to \Phi$ pointwise.

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_n be a sequence of \mathbb{R}^n -valued random variables, and X be an \mathbb{R}^n -valued random variable, with corresponding characteristic functions Φ_n and Φ . Then,

$X_n \to X$ in distribution $\iff \Phi_n \to \Phi$ pointwise.

Hence, to find the distributional discrepancy in log ζ , one looks for pointwise estimates for the characteristic functions.

We have the following theorem that tells us that these characteristic functions are not too far apart:

Theorem

Let $1/2 < \sigma < 1$ and $A \ge 1$ be fixed. There exists a constant $b = b(\sigma, A)$ such that for all $|u|, |v| \le b(\log T)^{\sigma}$, we have

$$\Phi_{\sigma,T}(u,v) = \Phi_{\sigma}^r(u,v) + \mathcal{O}\left(rac{1}{(\log T)^A}
ight).$$

Anurag Sahay (UoR)

Let $Y \ge 0$ be a real number, and define the Dirichlet polynomial $R_Y(\sigma + it)$ by

$$R_{Y}(\sigma + it) = \sum_{n \leq Y} \frac{\Lambda(n)}{n^{\sigma + it} \log n} = \sum_{p^{k} \leq Y} \frac{1}{kp^{k(\sigma + it)}}$$

Anurag Sahay (UoR)

Let $Y \ge 0$ be a real number, and define the Dirichlet polynomial $R_Y(\sigma + it)$ by

$$R_Y(\sigma + it) = \sum_{n \le Y} \frac{\Lambda(n)}{n^{\sigma + it} \log n} = \sum_{p^k \le Y} \frac{1}{k p^{k(\sigma + it)}}$$

Correspondingly, we define the random Dirichlet polynomial by

$$R_{Y}(\sigma, X) = \sum_{n \leq Y} \frac{\Lambda(n)X(n)}{n^{\sigma} \log n} = \sum_{p^{k} \leq Y} \frac{X(p)^{k}}{kp^{k\sigma}}$$

Approximating $\Phi_{\sigma,T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v \ll_{\sigma,A} (\log T)^{\sigma}$,

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu \operatorname{\mathsf{Re}} \log \zeta(\sigma+it) + iv \operatorname{\mathsf{Im}} \log \zeta(\sigma+it)
ight)
ight)$$

Then, one can show that for $u, v \ll_{\sigma,A} (\log T)^{\sigma}$,

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right) \\ \approx \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma+it)+iv\operatorname{\mathsf{Im}}R_Y(\sigma+it)\right) \right)$$

Then, one can show that for $u, v \ll_{\sigma,A} (\log T)^{\sigma}$,

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right)$$

$$\approx \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma+it) + iv\operatorname{\mathsf{Im}}R_Y(\sigma+it)\right) \right)$$

$$\approx \mathbb{E} \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma,X) + iv\operatorname{\mathsf{Im}}R_Y(\sigma,X)\right) \right)$$

Then, one can show that for $u, v \ll_{\sigma,A} (\log T)^{\sigma}$,

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right)\right) \\ \approx \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma+it)+iv\operatorname{\mathsf{Im}}R_Y(\sigma+it)\right)\right) \\ \approx \mathbb{E} \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma,X)+iv\operatorname{\mathsf{Im}}R_Y(\sigma,X)\right)\right) \\ \approx \mathbb{E} \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right)$$

Then, one can show that for $u, v \ll_{\sigma,A} (\log T)^{\sigma}$,

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_{T} \left(\exp\left(iu \operatorname{Re}\log\zeta(\sigma+it)+iv \operatorname{Im}\log\zeta(\sigma+it)\right) \right) \\ \approx \mathbb{E}_{T} \left(\exp\left(iu \operatorname{Re} R_{Y}(\sigma+it)+iv \operatorname{Im} R_{Y}(\sigma+it)\right) \right) \\ \approx \mathbb{E} \left(\exp\left(iu \operatorname{Re} R_{Y}(\sigma,X)+iv \operatorname{Im} R_{Y}(\sigma,X)\right) \right) \\ \approx \mathbb{E} \left(\exp\left(iu \operatorname{Re}\log\zeta(\sigma,X)+iv \operatorname{Im}\log\zeta(\sigma,X)\right) \right) \\ = \Phi_{\sigma}^{r}(u,v).$$

Here \approx means up to an acceptable error.

Beurling-Selberg functions are a major tool in analytic number theory, which essentially arise as smoothed approximations to cutoff functions with prescribed Fourier support.

Beurling-Selberg functions are a major tool in analytic number theory, which essentially arise as smoothed approximations to cutoff functions with prescribed Fourier support.

Lemma (Beurling-Selberg functions for a rectangle)

Let \mathcal{R} be an axis-parallel rectangle in \mathbb{C} , and L > 0 be a real number. For any $z \in \mathbb{C}$ we have

$$1_{\mathcal{R}}(z) = W_{L,\mathcal{R}}(z) + E_{L,\mathcal{R}}(z)$$

where $W_{L,\mathcal{R}}(z)$ is smooth, and

$$E_{L,\mathcal{R}}(z) \ll (\operatorname{sinc} \pi L \theta_z)^2$$

with sinc $x = \frac{\sin x}{x}$, and θ_z is the biggest among the distances of z from the sides of \mathcal{R} .

э

A D N A B N A B N A B N

Uniformly for axis-parallel rectangles \mathcal{R} , we want to bound

$$D^{\mathcal{R}}_{\sigma}(\mathcal{T}) = \Big| \mathbb{P}_{\mathcal{T}}(\log \zeta(\sigma + it) \in \mathcal{R}) - \mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R}) \Big|.$$

Uniformly for axis-parallel rectangles \mathcal{R} , we want to bound

$$D^{\mathcal{R}}_{\sigma}(\mathcal{T}) = \Big| \mathbb{P}_{\mathcal{T}}(\log \zeta(\sigma + it) \in \mathcal{R}) - \mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R}) \Big|.$$

We can rewrite this as the magnitude of

$$\mathbb{E}_{\mathcal{T}}\Big[\mathbf{1}_{\mathcal{R}}(\log\zeta(\sigma+it)\Big] - \mathbb{E}\Big[\mathbf{1}_{\mathcal{R}}(\log\zeta(\sigma,X)\Big]$$

Anurag Sahay (UoR)

Uniformly for axis-parallel rectangles $\mathcal{R}\text{,}$ we want to bound

$$D^{\mathcal{R}}_{\sigma}(\mathcal{T}) = \Big| \mathbb{P}_{\mathcal{T}}(\log \zeta(\sigma + it) \in \mathcal{R}) - \mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R}) \Big|.$$

We can rewrite this as the magnitude of

$$\mathbb{E}_{\mathcal{T}} \Big[\mathbb{1}_{\mathcal{R}} (\log \zeta(\sigma + it) \Big] - \mathbb{E} \Big[\mathbb{1}_{\mathcal{R}} (\log \zeta(\sigma, X) \Big] \\ \approx \mathbb{E}_{\mathcal{T}} \Big[W_{L,\mathcal{R}} (\log \zeta(\sigma + it) \Big] - \mathbb{E} \Big[W_{L,\mathcal{R}} (\log \zeta(\sigma, X) \Big] \\ \text{where the error term } \mathbb{E}_{\mathcal{T}} \Big[E_{L,\mathcal{R}} (\log \zeta(\sigma + it) \Big] - \mathbb{E} \Big[E_{L,\mathcal{R}} (\log \zeta(\sigma, X) \Big] \text{ can} \\ \text{be shown to be } \ll 1/L.$$

Explicitly, for z = x + iy, we have that $W_{L,\mathcal{R}}(z)$ is given by

$$\operatorname{Re} \int_{0}^{L} \int_{0}^{L} \frac{G\left(\frac{u}{L}\right) G\left(\frac{v}{L}\right) \left(e(ux - vy)f_{1,\mathcal{R}}(u,v) - e(ux + vy)f_{2,\mathcal{R}}(u,v)\right)}{2uv} dudv$$

where G is bounded on [0,1], and $f_{j,\mathcal{R}}(u,v) \ll \mu(\mathcal{R})uv$.

Explicitly, for z = x + iy, we have that $W_{L,\mathcal{R}}(z)$ is given by

$$\operatorname{Re} \int_{0}^{L} \int_{0}^{L} \frac{G\left(\frac{u}{L}\right) G\left(\frac{v}{L}\right) \left(e(ux - vy)f_{1,\mathcal{R}}(u,v) - e(ux + vy)f_{2,\mathcal{R}}(u,v)\right)}{2uv} dudv$$

where G is bounded on [0,1], and $f_{j,\mathcal{R}}(u,v) \ll \mu(\mathcal{R})uv$. It follows that $\mathbb{E}\left[W_{L,\mathcal{R}}(\log \zeta)\right]$ is given by the real part of

$$\int_{0}^{L} \int_{0}^{L} \frac{G\left(\frac{u}{L}\right) G\left(\frac{v}{L}\right) \left(\Phi(2\pi u, -2\pi v) f_{1,\mathcal{R}}(u, v) - \Phi(2\pi u, 2\pi v) f_{2,\mathcal{R}}(u, v)\right)}{2uv} du dv$$

Extracting the Discrepancy Bound

Proof Idea.

From this, together with our estimate for characteristic functions we conclude that

$$\mathbb{E}_{\mathcal{T}}\Big[W_{L,\mathcal{R}}(\log\zeta(\sigma+it)\Big] - \mathbb{E}\Big[W_{L,\mathcal{R}}(\log\zeta(\sigma,X)\Big] \ll_{\sigma,\mathcal{A}} \frac{L^{2}\mu(\mathcal{R})}{(\log\mathcal{T})^{\mathcal{A}}}$$

provided that $L \ll_{\sigma,A} (\log T)^{\sigma}$.

Extracting the Discrepancy Bound

Proof Idea.

From this, together with our estimate for characteristic functions we conclude that

$$\mathbb{E}_{\mathcal{T}}\Big[W_{L,\mathcal{R}}(\log\zeta(\sigma+it)\Big] - \mathbb{E}\Big[W_{L,\mathcal{R}}(\log\zeta(\sigma,X)\Big] \ll_{\sigma,\mathcal{A}} \frac{L^{2}\mu(\mathcal{R})}{(\log\mathcal{T})^{\mathcal{A}}}$$

provided that $L \ll_{\sigma,A} (\log T)^{\sigma}$. In particular, choosing A large and $L \asymp_{\sigma,A} (\log T)^{\sigma}$, we see that

$$D^{\mathcal{R}}_{\sigma}(T) \ll_{\sigma,\mathcal{A}} rac{1}{(\log T)^{\sigma}} + rac{\mu(\mathcal{R})}{(\log T)^{A-2\sigma}}.$$

From this, together with our estimate for characteristic functions we conclude that

$$\mathbb{E}_{\mathcal{T}}\Big[W_{L,\mathcal{R}}(\log\zeta(\sigma+it)\Big] - \mathbb{E}\Big[W_{L,\mathcal{R}}(\log\zeta(\sigma,X)\Big] \ll_{\sigma,\mathcal{A}} \frac{L^{2}\mu(\mathcal{R})}{(\log\mathcal{T})^{\mathcal{A}}}$$

provided that $L \ll_{\sigma,A} (\log T)^{\sigma}$. In particular, choosing A large and $L \asymp_{\sigma,A} (\log T)^{\sigma}$, we see that

$$D^{\mathcal{R}}_{\sigma}(T) \ll_{\sigma,\mathcal{A}} rac{1}{(\log T)^{\sigma}} + rac{\mu(\mathcal{R})}{(\log T)^{A-2\sigma}}.$$

To establish the theorem we need to remove the dependence on \mathcal{R} . This can be done by appealing to a large deviation estimate – morally this says that the extremal \mathcal{R} maximising $D_{\sigma}^{\mathcal{R}}(T)$ satisfies $\mathcal{R} \subseteq [-\log_2 T, \log_2 T]^2$, completing the proof.

The End

∃ ► < ∃ ►</p>

2