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Notation and Preliminaries

We use the following notation to emphasize the probabilistic ideas in this
area:

We view [T , 2T ] as a probability space with the normalized Lebesgue
measure, which we denote by PT (·).

We write ET (·) for the expectation against that probability. Clearly,

ET [f (t)] =
1

T

∫ 2T

T
f (t) dt

We will use P(·) for probability and E(·) for expectation associated
with other sources of randomness.

Any limit of random variables in this talk will be in the sense of
convergence in distribution.
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How is log ζ(σ + it) distributed for large t?

Fix σ ∈ R. Then the map

t 7→ log ζ(σ + it)

is a C-valued random variable on [T , 2T ].

A classical question in analytic number theory is the following: what is the
distribution of this random variable for large T ?

This question amounts to asking what is the distributional limit as
T →∞ of the random variables

{t 7→ log ζ(σ + it) : t ∈ [T , 2T ]}T>0,

if it exists.
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How is log ζ(σ + it) distributed for large t?

In light of the functional equation, we can restrict our discussion to
σ ≥ 1/2.

The case σ > 1 is relatively straightforward, since ζ(s) has an Euler
product and a Dirichlet series that both converge absolutely.

The case σ = 1/2 was considered by Selberg, who proved his Central Limit
Theorem: loosely, it says that Re log ζ(1/2 + it) and Im log ζ(1/2 + it) are
both normally distributed with mean 0 and variance 1

2 log log T . We will
not discuss this further today (it will come up in a later talk in the series).

We will thus restrict ourselves to 1/2 < σ ≤ 1.
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The distribution of log ζ(σ + it) for σ > 1/2

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let σ > 1/2 be fixed. Then, the sequence of C-valued random variables

{t 7→ log ζ(σ + it) : t ∈ [T , 2T ]}T>0,

converges in distribution as T →∞. Furthermore, the limiting distribution
is continuous.

The main result of Lamzouri, Lester and Radziwi l l[LLR19] is an estimate
on the rate of this convergence in the regime 1/2 < σ ≤ 1.

For simplicity of exposition, we will not consider σ = 1 in this talk,
although the same ideas apply, and are treated in [LLR19].
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Euler Product for the Riemann Zeta Function

For σ > 1, we have the following convergent product formula for the
Riemann zeta function due to to Euler:

ζ(s) =
∏
p

(
1

1− 1
ps

)

Putting s = σ + it, and rearranging a bit, we get that

ζ(σ + it) =
∏
p

(
1

1− p−it

pσ

)
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The Behaviour of p−it

For t ∈ R, we have that n−it ∈ T ⊆ C, for n ∈ N. n−it is clearly
distributed uniformly on T for every n.

What happens when t ∈ [T , 2T ]?

How do these behave individually?

For fixed n, and large T , they are distributed approximately uniformly.

How do they interact for different values of n?

2−it and 4−it?
2−it , 3−it and 6−it?
2−it and 3−it? 5−it and 6−it?

In general there is no reason to expect m−it and n−it to show any
sort of relationship when m and n are coprime.
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The Behaviour of p−it

The heuristic for why m−it and n−it should behave independently when
(m, n) = 1 comes from the following theorem from harmonic analysis:

Theorem (Kronecker-Weyl)

Let θ1, · · · , θn ∈ R be linearly independent over Q. Then the set

{(e(θ1x), · · · , e(θnx) : x ∈ R}

is equidistributed on Tn, where e(·) = e2πi(·) as usual.

Note that {log p : p prime} is Q-linearly independent – this is the
fundamental theorem of arithmetic. We conclude that any finite subset of
pair-wise coprime integers should behave independently.
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The Definition of the Random Model ζ(σ,X )

This behaviour of p−it as approximately uniform and i.i.d. random
variables on [T , 2T ] leads to the following definition:

Definition (Random Model for ζ)

Let X be random variable uniformly taking values in T∞, indexed by the
primes. In other words, X = {X (p)}p is a family of independent random
variables uniformly distributed on the unit circle in C, indexed by the
primes. We define the C-valued random variable ζ(σ,X ) as follows

ζ(σ,X ) =
∏
p

 1

1− X (p)
pσ


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The Random Model ζ(σ,X )

Definition (Random Model)

Let X be random variable uniformly taking values in T∞, indexed by the
primes.Then, we define,

ζ(σ,X ) =
∏
p

 1

1− X (p)
pσ



It can be shown using probabilistic techniques (e.g., the Kolmogorov
3-series theorem or Chernoff-style concentration bounds) that the above
product converges almost surely for σ > 1/2.

Furthermore, for σ > 1/2, ζ(σ,X ) is a C-valued random variable with a
continuous distribution, and Bohr-Jessen’s result [BJ30] is essentially that
{log ζ(σ + it)}t∈[T ,2T ] → log ζ(σ,X ) as T →∞.
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The Discrepancy Between log ζ(σ + it) and log ζ(σ,X )

The limit {log ζ(σ + it)}t∈[T ,2T ] → log ζ(σ,X ) as T →∞ naturally leads
one to the question of how large the discrepancy between the distributions
of true log ζ and the the random model get for a fixed T .

Definition (Discrepancy)

Let σ > 1/2 be fixed, and T be large. Then,

Dσ(T ) = sup
R
|PT (log ζ(σ + it) ∈ R)− P (log ζ(σ,X ) ∈ R)|

where the supremum runs over all axis-parallel rectangles R ⊆ C.

The Bohr-Jessen result is Dσ(T ) = o(1).
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The Discrepancy Between log ζ(σ + it) and log ζ(σ,X )

Lamzouri, Lester and Radziwi l l prove the following bound in [LLR19]:

Theorem

Let 1/2 < σ < 1 be fixed. Then

Dσ(T )�σ
1

(log T )σ
.

This improves on an earlier bound by Harman and Matsumoto.
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The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function Φξ(x) is given by

Φξ(x) = E
(

e ixξ
)
.

The characteristic function is similar to the moment generating function
Mξ(x) = E(exξ) but with the advantage that Φξ always exists for x ∈ R,
even though the moment generating function need not.

If F (u) = P(ξ ≤ u) is the distibution function of ξ on R, then clearly,

Φξ(x) =

∫ ∞
−∞

e ixudF (u)

and so Φξ is just the Fourier transform of the measure dF .
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The Characteristic Function of a Random Variable

When working with complex random variables ξ, the domain is extended
to z ∈ C, and the definition is changed to

Φξ(z) = E
(

e i Re zξ
)

Taking z = u + iv , and thinking of Φξ as a function of two real variables,
this is the same as saying

Φξ(u, v) = E
(

e i(u Re ξ+v Im ξ)
)
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The Characteristic Function of log ζ

This leads us to the following two definitions:

Definition (Characteristic Function of log ζ(σ,X ))

Let σ > 1/2 be fixed. Then, we define

Φr
σ(u, v) = E (exp (iu Re log ζ(σ,X ) + iv Im log ζ(σ,X ))) .

Definition (Characteristic Function of log ζ(σ + it))

Let σ > 1/2 and T large be fixed. Then, we define

Φσ,T (u, v) = ET (exp (iu Re log ζ(σ + it) + iv Im log ζ(σ + it)))

=
1

T

∫ 2T

T
exp (iu Re log ζ(σ + it) + iv Im log ζ(σ + it)) dt.
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Motivation: Lévy’s Convergence Theorem

The motivation for considering the characteristic function of log ζ comes
from the following theorem from probability:

Theorem (Lévy’s Convergence Theorem)

Let Xn be a sequence of Rn-valued random variables, and X be an
Rn-valued random variable, with corresponding characteristic functions Φn

and Φ. Then,

Xn → X in distribution ⇐⇒ Φn → Φ pointwise.

Hence, to find the distributional discrepancy in log ζ, one looks for
pointwise estimates for the characteristic functions.
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Approximating Φσ,T by Φr
σ

We have the following theorem from [LLR19] that tells us that these
characteristic functions are not too far apart:

Theorem

Let 1/2 < σ < 1 and A ≥ 1 be fixed. There exists a constant b = b(σ,A)
such that for all |u|, |v | ≤ b(log T )σ, we have

Φσ,T (u, v) = Φr
σ(u, v) +O

(
1

(log T )A

)
.
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Approximating Φσ,T by Φr
σ: High Level Proof Idea

Proof Idea.

Let Y ≥ 0 be a real number, and define the Dirichlet polynomial
RY (σ + it) by

RY (σ + it) =
∑
n≤Y

Λ(n)

nσ+it log n
=
∑
pk≤Y

1

kpk(σ+it)

Correspondingly, we define the random Dirichlet polynomial by

RY (σ,X ) =
∑
n≤Y

Λ(n)X (n)

nσ log n
=
∑
pk≤Y

X (p)k

kpkσ
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Approximating Φσ,T by Φr
σ: High Level Proof Idea

Proof Idea.

Then, one can show that for u, v �σ,A (log T )σ,

Φσ,T (u, v) = ET (exp (iu Re log ζ(σ + it) + iv Im log ζ(σ + it)))

≈ ET (exp (iu Re RY (σ + it) + iv Im RY (σ + it)))

≈ E (exp (iu Re RY (σ,X ) + iv Im RY (σ,X )))

≈ E (exp (iu Re log ζ(σ,X ) + iv Im log ζ(σ,X )))

= Φr
σ(u, v).

Here ≈ means up to an acceptable error.
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log ζ(σ + it) ≈ RY (σ + it)

Lemma

Assume RH. Let 1/2 < σ ≤ 1 be fixed and 1� Y � T . For t ∈ [T , 2T ],
we have

log ζ(σ + it) = RY (σ + it) +O(Y−(σ−1/2)/2 log3 T )

=
∑
n≤Y

1

kpk(σ+it)
+O(Y−(σ−1/2)/2 log3 T ).

The above equality will hold as long as one stays away from any potential
zeroes of ζ(s). For the application to characteristic functions, one can use
a zero-density estimate to remove the need for RH.
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log ζ(σ + it) ≈ RY (σ + it)

Proof Sketch.

By Perron’s formula, one has for c = 1− σ + 1
logY ,

1

2πi

∫ c+iY

c−iY
log ζ(σ + it + w)

Y w

w
dw =

∑
pk≤Y

1

kpk(σ+it)
+O(Y−σ log Y )

We can now pull the contour left until a vertical line Re w = σ′ with
1/2 < σ′ + σ < σ. Because we are assuming no zeroes, the integrand is
regular except when w = 0, which gives log ζ(σ + it).

Thus, using bounds for log ζ far away from zeroes, the contribution of the
horizontal segments and the new vertical segment can be bounded, giving
the desired error.
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RY (σ + it) ≈ RY (σ,X ) on the Fourier side

Lemma

Let 1
2 < σ < 1 and A ≥ 1 be fixed. Let Y = (log T )A. There exists a

constants b = b(σ,A) > 0 such that for all complex numbers z1, z2 with
|z1|, |z2| �σ,A (log T )σ we have

1

T

∫
A(T )

exp
(

z1RY (σ + it) + z2RY (σ + it)
)

dt

= E
(

exp
(

z1RY (σ,X ) + z2RY (σ,X )
))

+ O

(
exp

(
−b6

log T

log log T

))
,

where

A(T ) = {t ∈ [T , 2T ] : |RY (σ + it)| ≤ (log T )1−σ/ log log T}.

Putting z1 = i(u − iv)/2 and z2 = i(u + iv)/2, we get (approximately) the
characteristic function on both sides.
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RY (σ + it) ≈ RY (σ,X ) on the Fourier side

Proof Sketch.

For simplicitly, let’s set z1 = z and z2 = 0. By Taylor’s theorem,

exp t ≈
∑
j≤N

t j

j!
.

This approximation works well when N � |t|.

Taking t = zRY (σ + it), we find that t is a Dirichlet polynomial of length
Y = (log T )A, and t j = [zRY (σ + it)]j is of length Y j .

Thus, exp t is approximately a Dirichlet polynomial of length Y N for some
N � |t|.

We can compute moments of “short” Dirichlet polynomials – say of length
T 1/3. Hence, we can compute the moment of exp t provided Y N ≤ T 1/3.
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RY (σ + it) ≈ RY (σ,X ) on the Fourier side

Proof Sketch.

Taking log, this translates to

N log Y ≤ log T

3
,

and hence we need N �A
logT

log logT with a sufficiently small implicit
constant.
Thus, if we take |z | �A (log T )σ (again with a sufficiently small
constant), the constraint that

|RY (σ + it)| ≤ (log T )1−σ

log log T
,

gives that

t = zRY (σ + it)� log T

log log T
.
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RY (σ + it) ≈ RY (σ,X ) on the Fourier side

Proof Sketch.

Thus, choosing the constants carefully, the problem reduces to showing
that

1

T

∫
A(T )

RY (σ + it)jRY (σ + it)` dt ≈ E(RY (σ,X )jRY (σ,X )`)),

for j + ` ≤ N �A
logT

log logT . At this scale, nit is a good harmonic oscillator,
and so this can be done.
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Thank You!
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