The Distribution of Values of the Riemann Zeta Function inside the Critical Strip

Anurag Sahay
University of Rochester
asahay@ur.rochester.edu

21st April, 2021

London Analytic Number Theory Study Group

References

Harald Bohr and Börge Jessen,
Über die Werteverteilung der Riemannschen Zetafunktion, erste Mitteilung.
Acta Math. 54 (1930), no. 1, 1-35. MR1555301
國 Youness Lamzouri, Stephen Lester, and Maksym Radziwitt.
Discrepancy bounds for the distribution of the Riemann zeta-function and applications.
J. Anal. Math., 139(2):453-494, 2019.

國 Andrew Granville and K. Soundararajan.
Extreme values of $|\zeta(1+i t)|$.
In The Riemann zeta function and related themes: papers in honour of Professor
K. Ramachandra, volume 2 of Ramanujan Math. Soc. Lect. Notes Ser., pages

65-80. Ramanujan Math. Soc., Mysore, 2006.
E.C. Titchmarsh and D.R. Heath-Brown.

The theory of the Riemann zeta-function.
Oxford University Press, 1986.

Overview of the Talk

(1) Introduction

- The Limiting Distribution of $\log \zeta(s)$
- Euler Product for the Riemann Zeta Function
- The Random Model for the Riemann Zeta Function
(2) Main Results
- Discrepancy for $\log \zeta$
- The Characteristic Function
(3) Sketch of the Proof
- Approximating Characteristic Functions
- Approximation log ζ by a Dirichlet polynomial
- Relating $R_{Y}(\sigma+i t)$ to $R_{Y}(\sigma, X)$
- Relating $R_{Y}(\sigma+i t)$ to $R_{Y}(\sigma, X)$

Notation and Preliminaries

We use the following notation to emphasize the probabilistic ideas in this area:

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.

Notation and Preliminaries

We use the following notation to emphasize the probabilistic ideas in this area:

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.
- We write $\mathbb{E}_{T}(\cdot)$ for the expectation against that probability. Clearly,

$$
\mathbb{E}_{T}[f(t)]=\frac{1}{T} \int_{T}^{2 T} f(t) d t
$$

Notation and Preliminaries

We use the following notation to emphasize the probabilistic ideas in this area:

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.
- We write $\mathbb{E}_{T}(\cdot)$ for the expectation against that probability. Clearly,

$$
\mathbb{E}_{T}[f(t)]=\frac{1}{T} \int_{T}^{2 T} f(t) d t
$$

- We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.

Notation and Preliminaries

We use the following notation to emphasize the probabilistic ideas in this area:

- We view $[T, 2 T]$ as a probability space with the normalized Lebesgue measure, which we denote by $\mathbb{P}_{T}(\cdot)$.
- We write $\mathbb{E}_{T}(\cdot)$ for the expectation against that probability. Clearly,

$$
\mathbb{E}_{T}[f(t)]=\frac{1}{T} \int_{T}^{2 T} f(t) d t
$$

- We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.
- Any limit of random variables in this talk will be in the sense of convergence in distribution.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

Fix $\sigma \in \mathbb{R}$. Then the map

$$
t \mapsto \log \zeta(\sigma+i t)
$$

is a \mathbb{C}-valued random variable on $[T, 2 T]$.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

Fix $\sigma \in \mathbb{R}$. Then the map

$$
t \mapsto \log \zeta(\sigma+i t)
$$

is a \mathbb{C}-valued random variable on $[T, 2 T]$.

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T ?

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

Fix $\sigma \in \mathbb{R}$. Then the map

$$
t \mapsto \log \zeta(\sigma+i t)
$$

is a \mathbb{C}-valued random variable on $[T, 2 T]$.

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T ?

This question amounts to asking what is the distributional limit as $T \rightarrow \infty$ of the random variables

$$
\{t \mapsto \log \zeta(\sigma+i t): t \in[T, 2 T]\}_{T>0},
$$

if it exists.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1 / 2$.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1 / 2$.

The case $\sigma>1$ is relatively straightforward, since $\zeta(s)$ has an Euler product and a Dirichlet series that both converge absolutely.

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1 / 2$.

The case $\sigma>1$ is relatively straightforward, since $\zeta(s)$ has an Euler product and a Dirichlet series that both converge absolutely.

The case $\sigma=1 / 2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\operatorname{Re} \log \zeta(1 / 2+i t)$ and $\operatorname{Im} \log \zeta(1 / 2+i t)$ are both normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further today (it will come up in a later talk in the series).

How is $\log \zeta(\sigma+i t)$ distributed for large t ?

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1 / 2$.

The case $\sigma>1$ is relatively straightforward, since $\zeta(s)$ has an Euler product and a Dirichlet series that both converge absolutely.

The case $\sigma=1 / 2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\operatorname{Re} \log \zeta(1 / 2+i t)$ and $\operatorname{Im} \log \zeta(1 / 2+i t)$ are both normally distributed with mean 0 and variance $\frac{1}{2} \log \log T$. We will not discuss this further today (it will come up in a later talk in the series).

We will thus restrict ourselves to $1 / 2<\sigma \leq 1$.

The distribution of $\log \zeta(\sigma+i t)$ for $\sigma>1 / 2$

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let $\sigma>1 / 2$ be fixed. Then, the sequence of \mathbb{C}-valued random variables

$$
\{t \mapsto \log \zeta(\sigma+i t): t \in[T, 2 T]\}_{T>0},
$$

converges in distribution as $T \rightarrow \infty$. Furthermore, the limiting distribution is continuous.

The distribution of $\log \zeta(\sigma+i t)$ for $\sigma>1 / 2$

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let $\sigma>1 / 2$ be fixed. Then, the sequence of \mathbb{C}-valued random variables

$$
\{t \mapsto \log \zeta(\sigma+i t): t \in[T, 2 T]\}_{T>0},
$$

converges in distribution as $T \rightarrow \infty$. Furthermore, the limiting distribution is continuous.

The main result of Lamzouri, Lester and Radziwitł[LLR19] is an estimate on the rate of this convergence in the regime $1 / 2<\sigma \leq 1$.

The distribution of $\log \zeta(\sigma+i t)$ for $\sigma>1 / 2$

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let $\sigma>1 / 2$ be fixed. Then, the sequence of \mathbb{C}-valued random variables

$$
\{t \mapsto \log \zeta(\sigma+i t): t \in[T, 2 T]\}_{T>0},
$$

converges in distribution as $T \rightarrow \infty$. Furthermore, the limiting distribution is continuous.

The main result of Lamzouri, Lester and Radziwitł[LLR19] is an estimate on the rate of this convergence in the regime $1 / 2<\sigma \leq 1$.

For simplicity of exposition, we will not consider $\sigma=1$ in this talk, although the same ideas apply, and are treated in [LLR19].

Euler Product for the Riemann Zeta Function

For $\sigma>1$, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$
\zeta(s)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)
$$

Euler Product for the Riemann Zeta Function

For $\sigma>1$, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$
\zeta(s)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)
$$

Putting $s=\sigma+i t$, and rearranging a bit, we get that

$$
\zeta(\sigma+i t)=\prod_{p}\left(\frac{1}{1-\frac{p^{-i t}}{p^{\sigma}}}\right)
$$

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?
- $2^{-i t}$ and $3^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?
- $2^{-i t}$ and $3^{-i t}$? $5^{-i t}$ and $6^{-i t}$?

The Behaviour of $p^{-i t}$

For $t \in \mathbb{R}$, we have that $n^{-i t} \in \mathbb{T} \subseteq \mathbb{C}$, for $n \in \mathbb{N}$. $n^{-i t}$ is clearly distributed uniformly on \mathbb{T} for every n.

What happens when $t \in[T, 2 T]$?

- How do these behave individually?
- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n ?
- $2^{-i t}$ and $4^{-i t}$?
- $2^{-i t}, 3^{-i t}$ and $6^{-i t}$?
- $2^{-i t}$ and $3^{-i t}$? $5^{-i t}$ and $6^{-i t}$?

In general there is no reason to expect $m^{-i t}$ and $n^{-i t}$ to show any sort of relationship when m and n are coprime.

The Behaviour of $p^{-i t}$

The heuristic for why $m^{-i t}$ and $n^{-i t}$ should behave independently when (m, n) $=1$ comes from the following theorem from harmonic analysis:

Theorem (Kronecker-Weyl)

Let $\theta_{1}, \cdots, \theta_{n} \in \mathbb{R}$ be linearly independent over \mathbb{Q}. Then the set

$$
\left\{\left(e\left(\theta_{1} x\right), \cdots, e\left(\theta_{n} x\right): x \in \mathbb{R}\right\}\right.
$$

is equidistributed on \mathbb{T}^{n}, where $e(\cdot)=e^{2 \pi i(\cdot)}$ as usual.
Note that $\{\log p: p$ prime $\}$ is \mathbb{Q}-linearly independent - this is the fundamental theorem of arithmetic. We conclude that any finite subset of pair-wise coprime integers should behave independently.

The Definition of the Random Model $\zeta(\sigma, X)$

This behaviour of $p^{-i t}$ as approximately uniform and i.i.d. random variables on $[T, 2 T]$ leads to the following definition:

Definition (Random Model for ζ)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. In other words, $X=\{X(p)\}_{p}$ is a family of independent random variables uniformly distributed on the unit circle in \mathbb{C}, indexed by the primes. We define the \mathbb{C}-valued random variable $\zeta(\sigma, X)$ as follows

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

The Random Model $\zeta(\sigma, X)$

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. Then, we define,

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

The Random Model $\zeta(\sigma, X)$

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. Then, we define,

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma>1 / 2$.

The Random Model $\zeta(\sigma, X)$

Definition (Random Model)

Let X be random variable uniformly taking values in \mathbb{T}^{∞}, indexed by the primes. Then, we define,

$$
\zeta(\sigma, X)=\prod_{p}\left(\frac{1}{1-\frac{X(p)}{p^{\sigma}}}\right)
$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma>1 / 2$.

Furthermore, for $\sigma>1 / 2, \zeta(\sigma, X)$ is a \mathbb{C}-valued random variable with a continuous distribution, and Bohr-Jessen's result [BJ30] is essentially that $\{\log \zeta(\sigma+i t)\}_{t \in[T, 2 T]} \rightarrow \log \zeta(\sigma, X)$ as $T \rightarrow \infty$.

The Discrepancy Between $\log \zeta(\sigma+i t)$ and $\log \zeta(\sigma, X)$

The limit $\{\log \zeta(\sigma+i t)\}_{t \in[T, 2 T]} \rightarrow \log \zeta(\sigma, X)$ as $T \rightarrow \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

The Discrepancy Between $\log \zeta(\sigma+i t)$ and $\log \zeta(\sigma, X)$

The limit $\{\log \zeta(\sigma+i t)\}_{t \in[T, 2 T]} \rightarrow \log \zeta(\sigma, X)$ as $T \rightarrow \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

Definition (Discrepancy)

Let $\sigma>1 / 2$ be fixed, and T be large. Then,

$$
\mathcal{D}_{\sigma}(T)=\sup _{\mathcal{R}}\left|\mathbb{P}_{T}(\log \zeta(\sigma+i t) \in \mathcal{R})-\mathbb{P}(\log \zeta(\sigma, X) \in \mathcal{R})\right|
$$

where the supremum runs over all axis-parallel rectangles $\mathcal{R} \subseteq \mathbb{C}$.
The Bohr-Jessen result is $D_{\sigma}(T)=o(1)$.

The Discrepancy Between $\log \zeta(\sigma+i t)$ and $\log \zeta(\sigma, X)$

Lamzouri, Lester and Radziwiłł prove the following bound in [LLR19]:
Theorem
Let $1 / 2<\sigma<1$ be fixed. Then

$$
D_{\sigma}(T) \ll_{\sigma} \frac{1}{(\log T)^{\sigma}} .
$$

This improves on an earlier bound by Harman and Matsumoto.

The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function $\Phi_{\xi}(x)$ is given by

$$
\Phi_{\xi}(x)=\mathbb{E}\left(e^{i x \xi}\right) .
$$

The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function $\Phi_{\xi}(x)$ is given by

$$
\Phi_{\xi}(x)=\mathbb{E}\left(e^{i x \xi}\right) .
$$

The characteristic function is similar to the moment generating function $M_{\xi}(x)=\mathbb{E}\left(e^{x \xi}\right)$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

The Characteristic Function of a Random Variable

For a real random variable ξ, the characteristic function $\Phi_{\xi}(x)$ is given by

$$
\Phi_{\xi}(x)=\mathbb{E}\left(e^{i x \xi}\right) .
$$

The characteristic function is similar to the moment generating function $M_{\xi}(x)=\mathbb{E}\left(e^{x \xi}\right)$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

If $F(u)=\mathbb{P}(\xi \leq u)$ is the distibution function of ξ on \mathbb{R}, then clearly,

$$
\Phi_{\xi}(x)=\int_{-\infty}^{\infty} e^{i x u} d F(u)
$$

and so Φ_{ξ} is just the Fourier transform of the measure $d F$.

The Characteristic Function of a Random Variable

When working with complex random variables ξ, the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$
\Phi_{\xi}(z)=\mathbb{E}\left(e^{i \operatorname{Re} \bar{z} \xi}\right)
$$

The Characteristic Function of a Random Variable

When working with complex random variables ξ, the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$
\Phi_{\xi}(z)=\mathbb{E}\left(e^{i \operatorname{Re} \bar{z} \xi}\right)
$$

Taking $z=u+i v$, and thinking of Φ_{ξ} as a function of two real variables, this is the same as saying

$$
\Phi_{\xi}(u, v)=\mathbb{E}\left(e^{i(u \operatorname{Re} \xi+v \operatorname{lm} \xi)}\right)
$$

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:
Definition (Characteristic Function of $\log \zeta(\sigma, X)$)
Let $\sigma>1 / 2$ be fixed. Then, we define

$$
\Phi_{\sigma}^{r}(u, v)=\mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{lm} \log \zeta(\sigma, X)))
$$

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:

Definition (Characteristic Function of $\log \zeta(\sigma, X)$)

Let $\sigma>1 / 2$ be fixed. Then, we define

$$
\Phi_{\sigma}^{r}(u, v)=\mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{lm} \log \zeta(\sigma, X))) .
$$

Definition (Characteristic Function of $\log \zeta(\sigma+i t)$)

Let $\sigma>1 / 2$ and T large be fixed. Then, we define

$$
\Phi_{\sigma, T}(u, v)=\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t)))
$$

The Characteristic Function of $\log \zeta$

This leads us to the following two definitions:

Definition (Characteristic Function of $\log \zeta(\sigma, X)$)

Let $\sigma>1 / 2$ be fixed. Then, we define

$$
\Phi_{\sigma}^{r}(u, v)=\mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{lm} \log \zeta(\sigma, X))) .
$$

Definition (Characteristic Function of $\log \zeta(\sigma+i t)$)

Let $\sigma>1 / 2$ and T large be fixed. Then, we define

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& =\frac{1}{T} \int_{T}^{2 T} \exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t)) d t .
\end{aligned}
$$

Motivation: Lévy's Convergence Theorem

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_{n} be a sequence of \mathbb{R}^{n}-valued random variables, and X be an \mathbb{R}^{n}-valued random variable, with corresponding characteristic functions Φ_{n} and Φ. Then,

$$
X_{n} \rightarrow X \text { in distribution } \Longleftrightarrow \Phi_{n} \rightarrow \Phi \text { pointwise. }
$$

Motivation: Lévy's Convergence Theorem

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_{n} be a sequence of \mathbb{R}^{n}-valued random variables, and X be an \mathbb{R}^{n}-valued random variable, with corresponding characteristic functions Φ_{n} and Φ. Then,

$$
X_{n} \rightarrow X \text { in distribution } \Longleftrightarrow \Phi_{n} \rightarrow \Phi \text { pointwise. }
$$

Hence, to find the distributional discrepancy in $\log \zeta$, one looks for pointwise estimates for the characteristic functions.

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r}

We have the following theorem from [LLR19] that tells us that these characteristic functions are not too far apart:

Theorem

Let $1 / 2<\sigma<1$ and $A \geq 1$ be fixed. There exists a constant $b=b(\sigma, A)$ such that for all $|u|,|v| \leq b(\log T)^{\sigma}$, we have

$$
\Phi_{\sigma, T}(u, v)=\Phi_{\sigma}^{r}(u, v)+\mathcal{O}\left(\frac{1}{(\log T)^{A}}\right)
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Let $Y \geq 0$ be a real number, and define the Dirichlet polynomial $R_{Y}(\sigma+i t)$ by

$$
R_{Y}(\sigma+i t)=\sum_{n \leq Y} \frac{\Lambda(n)}{n^{\sigma+i t} \log n}=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Let $Y \geq 0$ be a real number, and define the Dirichlet polynomial $R_{Y}(\sigma+i t)$ by

$$
R_{Y}(\sigma+i t)=\sum_{n \leq Y} \frac{\Lambda(n)}{n^{\sigma+i t} \log n}=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}
$$

Correspondingly, we define the random Dirichlet polynomial by

$$
R_{Y}(\sigma, X)=\sum_{n \leq Y} \frac{\Lambda(n) X(n)}{n^{\sigma} \log n}=\sum_{p^{k} \leq Y} \frac{X(p)^{k}}{k p^{k \sigma}}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\Phi_{\sigma, T}(u, v)=\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t)))
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{lm} R_{Y}(\sigma+i t)\right)\right)
\end{aligned}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{Im} R_{Y}(\sigma+i t)\right)\right) \\
& \approx \mathbb{E}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma, X)+i v \operatorname{Im} R_{Y}(\sigma, X)\right)\right)
\end{aligned}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{lm} R_{Y}(\sigma+i t)\right)\right) \\
& \approx \mathbb{E}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma, X)+i v \operatorname{lm} R_{Y}(\sigma, X)\right)\right) \\
& \approx \mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{Im} \log \zeta(\sigma, X)))
\end{aligned}
$$

Approximating $\Phi_{\sigma, T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

Then, one can show that for $u, v<_{\sigma, A}(\log T)^{\sigma}$,

$$
\begin{aligned}
\Phi_{\sigma, T}(u, v) & =\mathbb{E}_{T}(\exp (i u \operatorname{Re} \log \zeta(\sigma+i t)+i v \operatorname{lm} \log \zeta(\sigma+i t))) \\
& \approx \mathbb{E}_{T}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma+i t)+i v \operatorname{Im} R_{Y}(\sigma+i t)\right)\right) \\
& \approx \mathbb{E}\left(\exp \left(i u \operatorname{Re} R_{Y}(\sigma, X)+i v \operatorname{lm} R_{Y}(\sigma, X)\right)\right) \\
& \approx \mathbb{E}(\exp (i u \operatorname{Re} \log \zeta(\sigma, X)+i v \operatorname{Im} \log \zeta(\sigma, X))) \\
& =\Phi_{\sigma}^{r}(u, v) .
\end{aligned}
$$

Here \approx means up to an acceptable error.

$\log \zeta(\sigma+i t) \approx R_{Y}(\sigma+i t)$

Lemma

Assume RH. Let $1 / 2<\sigma \leq 1$ be fixed and $1 \ll Y \ll T$. For $t \in[T, 2 T]$, we have

$$
\begin{aligned}
\log \zeta(\sigma+i t) & =R_{Y}(\sigma+i t)+\mathcal{O}\left(Y^{-(\sigma-1 / 2) / 2} \log ^{3} T\right) \\
& =\sum_{n \leq Y} \frac{1}{k p^{k(\sigma+i t)}}+\mathcal{O}\left(Y^{-(\sigma-1 / 2) / 2} \log ^{3} T\right)
\end{aligned}
$$

$\log \zeta(\sigma+i t) \approx R_{Y}(\sigma+i t)$

Lemma

Assume RH. Let $1 / 2<\sigma \leq 1$ be fixed and $1 \ll Y \ll T$. For $t \in[T, 2 T]$, we have

$$
\begin{aligned}
\log \zeta(\sigma+i t) & =R_{Y}(\sigma+i t)+\mathcal{O}\left(Y^{-(\sigma-1 / 2) / 2} \log ^{3} T\right) \\
& =\sum_{n \leq Y} \frac{1}{k p^{k(\sigma+i t)}}+\mathcal{O}\left(Y^{-(\sigma-1 / 2) / 2} \log ^{3} T\right) .
\end{aligned}
$$

The above equality will hold as long as one stays away from any potential zeroes of $\zeta(s)$. For the application to characteristic functions, one can use a zero-density estimate to remove the need for RH.

$\log \zeta(\sigma+i t) \approx R_{Y}(\sigma+i t)$

Proof Sketch.

By Perron's formula, one has for $c=1-\sigma+\frac{1}{\log Y}$,

$$
\frac{1}{2 \pi i} \int_{c-i Y}^{c+i Y} \log \zeta(\sigma+i t+w) \frac{Y^{w}}{w} d w=
$$

$\log \zeta(\sigma+i t) \approx R_{Y}(\sigma+i t)$

Proof Sketch.

By Perron's formula, one has for $c=1-\sigma+\frac{1}{\log Y}$,

$$
\frac{1}{2 \pi i} \int_{c-i Y}^{c+i Y} \log \zeta(\sigma+i t+w) \frac{Y^{w}}{w} d w=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}+\mathcal{O}\left(Y^{-\sigma} \log Y\right)
$$

$\log \zeta(\sigma+i t) \approx R_{Y}(\sigma+i t)$

Proof Sketch.

By Perron's formula, one has for $c=1-\sigma+\frac{1}{\log Y}$,

$$
\frac{1}{2 \pi i} \int_{c-i Y}^{c+i Y} \log \zeta(\sigma+i t+w) \frac{Y^{w}}{w} d w=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}+\mathcal{O}\left(Y^{-\sigma} \log Y\right)
$$

We can now pull the contour left until a vertical line $\operatorname{Re} w=\sigma^{\prime}$ with $1 / 2<\sigma^{\prime}+\sigma<\sigma$. Because we are assuming no zeroes, the integrand is regular except when $w=0$, which gives $\log \zeta(\sigma+i t)$.

$\log \zeta(\sigma+i t) \approx R_{Y}(\sigma+i t)$

Proof Sketch.

By Perron's formula, one has for $c=1-\sigma+\frac{1}{\log Y}$,

$$
\frac{1}{2 \pi i} \int_{c-i Y}^{c+i Y} \log \zeta(\sigma+i t+w) \frac{Y^{w}}{w} d w=\sum_{p^{k} \leq Y} \frac{1}{k p^{k(\sigma+i t)}}+\mathcal{O}\left(Y^{-\sigma} \log Y\right)
$$

We can now pull the contour left until a vertical line $\operatorname{Re} w=\sigma^{\prime}$ with $1 / 2<\sigma^{\prime}+\sigma<\sigma$. Because we are assuming no zeroes, the integrand is regular except when $w=0$, which gives $\log \zeta(\sigma+i t)$.
Thus, using bounds for $\log \zeta$ far away from zeroes, the contribution of the horizontal segments and the new vertical segment can be bounded, giving the desired error.

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Lemma

Let $\frac{1}{2}<\sigma<1$ and $A \geq 1$ be fixed. Let $Y=(\log T)^{A}$. There exists a constants $b=b(\sigma, A)>0$ such that for all complex numbers z_{1}, z_{2} with $\left|z_{1}\right|,\left|z_{2}\right|<_{\sigma, A}(\log T)^{\sigma}$ we have

$$
\begin{aligned}
& \frac{1}{T} \int_{\mathcal{A}(T)} \exp \left(z_{1} R_{Y}(\sigma+i t)+z_{2} \overline{R_{Y}(\sigma+i t)}\right) d t \\
& \quad=\mathbb{E}\left(\exp \left(z_{1} R_{Y}(\sigma, X)+z_{2} \overline{R_{Y}(\sigma, X)}\right)\right)+O\left(\exp \left(-b_{6} \frac{\log T}{\log \log T}\right)\right),
\end{aligned}
$$

where

$$
\mathcal{A}(T)=\left\{t \in[T, 2 T]:\left|R_{Y}(\sigma+i t)\right| \leq(\log T)^{1-\sigma} / \log \log T\right\} .
$$

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Lemma

Let $\frac{1}{2}<\sigma<1$ and $A \geq 1$ be fixed. Let $Y=(\log T)^{A}$. There exists a constants $b=b(\sigma, A)>0$ such that for all complex numbers z_{1}, z_{2} with $\left|z_{1}\right|,\left|z_{2}\right|<_{\sigma, A}(\log T)^{\sigma}$ we have

$$
\begin{aligned}
& \frac{1}{T} \int_{\mathcal{A}(T)} \exp \left(z_{1} R_{Y}(\sigma+i t)+z_{2} \overline{R_{Y}(\sigma+i t)}\right) d t \\
& \quad=\mathbb{E}\left(\exp \left(z_{1} R_{Y}(\sigma, X)+z_{2} \overline{R_{Y}(\sigma, X)}\right)\right)+O\left(\exp \left(-b_{6} \frac{\log T}{\log \log T}\right)\right),
\end{aligned}
$$

where

$$
\mathcal{A}(T)=\left\{t \in[T, 2 T]:\left|R_{Y}(\sigma+i t)\right| \leq(\log T)^{1-\sigma} / \log \log T\right\}
$$

Putting $z_{1}=i(u-i v) / 2$ and $z_{2}=i(u+i v) / 2$, we get (approximately) the characteristic function on both sides.

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Proof Sketch.

For simplicitly, let's set $z_{1}=z$ and $z_{2}=0$. By Taylor's theorem,

$$
\exp t \approx \sum_{j \leq N} \frac{t^{j}}{j!}
$$

This approximation works well when $N \gg|t|$.

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Proof Sketch.

For simplicitly, let's set $z_{1}=z$ and $z_{2}=0$. By Taylor's theorem,

$$
\exp t \approx \sum_{j \leq N} \frac{t^{j}}{j!}
$$

This approximation works well when $N \gg|t|$.
Taking $t=z R_{Y}(\sigma+i t)$, we find that t is a Dirichlet polynomial of length $Y=(\log T)^{A}$, and $t^{j}=\left[z R_{Y}(\sigma+i t)\right]^{j}$ is of length Y^{j}.

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Proof Sketch.

For simplicitly, let's set $z_{1}=z$ and $z_{2}=0$. By Taylor's theorem,

$$
\exp t \approx \sum_{j \leq N} \frac{t^{j}}{j!}
$$

This approximation works well when $N \gg|t|$.
Taking $t=z R_{Y}(\sigma+i t)$, we find that t is a Dirichlet polynomial of length $Y=(\log T)^{A}$, and $t^{j}=\left[z R_{Y}(\sigma+i t)\right]^{j}$ is of length Y^{j}.

Thus, $\exp t$ is approximately a Dirichlet polynomial of length Y^{N} for some $N \gg|t|$.

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Proof Sketch.

For simplicitly, let's set $z_{1}=z$ and $z_{2}=0$. By Taylor's theorem,

$$
\exp t \approx \sum_{j \leq N} \frac{t^{j}}{j!}
$$

This approximation works well when $N \gg|t|$.
Taking $t=z R_{Y}(\sigma+i t)$, we find that t is a Dirichlet polynomial of length $Y=(\log T)^{A}$, and $t^{j}=\left[z R_{Y}(\sigma+i t)\right]^{j}$ is of length Y^{j}.

Thus, $\exp t$ is approximately a Dirichlet polynomial of length Y^{N} for some $N \gg|t|$.

We can compute moments of "short" Dirichlet polynomials - say of length $T^{1 / 3}$. Hence, we can compute the moment of $\exp t$ provided $Y^{N} \leq T^{1 / 3}$.

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Proof Sketch.

Taking log, this translates to

$$
N \log Y \leq \frac{\log T}{3}
$$

and hence we need $N<_{A} \frac{\log T}{\log \log T}$ with a sufficiently small implicit constant.
Thus, if we take $|z|<_{A}(\log T)^{\sigma}$ (again with a sufficiently small constant), the constraint that

$$
\left|R_{Y}(\sigma+i t)\right| \leq \frac{(\log T)^{1-\sigma}}{\log \log T}
$$

gives that

$$
t=z R_{Y}(\sigma+i t) \ll \frac{\log T}{\log \log T}
$$

$R_{Y}(\sigma+i t) \approx R_{Y}(\sigma, X)$ on the Fourier side

Proof Sketch.

Thus, choosing the constants carefully, the problem reduces to showing that

$$
\frac{1}{T} \int_{\mathcal{A}(T)} R_{Y}(\sigma+i t)^{j} \overline{R_{Y}(\sigma+i t)^{\ell}} d t \approx \mathbb{E}\left(R_{Y}(\sigma, X)^{j} \overline{\left.R_{Y}(\sigma, X)^{\ell}\right)}\right)
$$

for $j+\ell \leq N \ll A \frac{\log T}{\log \log T}$. At this scale, $n^{i t}$ is a good harmonic oscillator, and so this can be done.

Thank You!

