The Distribution of Values of the Riemann Zeta Function inside the Critical Strip

Anurag Sahay

University of Rochester

asahay@ur.rochester.edu

21st April, 2021

London Analytic Number Theory Study Group

Anurag Sahay (Univ. of Rochester)

Value Distribution of $\zeta(s)$

21st April, 2021 1/28

References

Harald Bohr and Börge Jessen,

Über die Werteverteilung der Riemannschen Zetafunktion, erste Mitteilung. Acta Math. 54 (1930), no. 1, 1–35. MR1555301

Youness Lamzouri, Stephen Lester, and Maksym Radziwiłł.

Discrepancy bounds for the distribution of the Riemann zeta-function and applications.

J. Anal. Math., 139(2):453-494, 2019.

Andrew Granville and K. Soundararajan.

Extreme values of $|\zeta(1+it)|$.

In The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, volume 2 of Ramanujan Math. Soc. Lect. Notes Ser., pages 65–80. Ramanujan Math. Soc., Mysore, 2006.

E.C. Titchmarsh and D.R. Heath-Brown. *The theory of the Riemann zeta-function.* Oxford University Press, 1986.

Overview of the Talk

Introduction

- The Limiting Distribution of $\log \zeta(s)$
- Euler Product for the Riemann Zeta Function
- The Random Model for the Riemann Zeta Function

Main Results

- Discrepancy for $\log \zeta$
- The Characteristic Function

Sketch of the Proof

- Approximating Characteristic Functions
- Approximation $\log \zeta$ by a Dirichlet polynomial
- Relating $R_Y(\sigma + it)$ to $R_Y(\sigma, X)$
- Relating $R_Y(\sigma + it)$ to $R_Y(\sigma, X)$

We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).

- We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).
- We write $\mathbb{E}_{\mathcal{T}}(\cdot)$ for the expectation against that probability. Clearly,

$$\mathbb{E}_T[f(t)] = \frac{1}{T} \int_T^{2T} f(t) \, dt$$

- We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).
- We write $\mathbb{E}_{\mathcal{T}}(\cdot)$ for the expectation against that probability. Clearly,

$$\mathbb{E}_{T}[f(t)] = \frac{1}{T} \int_{T}^{2T} f(t) dt$$

• We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.

- We view [T, 2T] as a probability space with the normalized Lebesgue measure, which we denote by P_T(·).
- We write $\mathbb{E}_{\mathcal{T}}(\cdot)$ for the expectation against that probability. Clearly,

$$\mathbb{E}_{T}[f(t)] = \frac{1}{T} \int_{T}^{2T} f(t) dt$$

- We will use $\mathbb{P}(\cdot)$ for probability and $\mathbb{E}(\cdot)$ for expectation associated with other sources of randomness.
- Any limit of random variables in this talk will be in the sense of convergence in distribution.

Fix $\sigma \in \mathbb{R}$. Then the map

$$t \mapsto \log \zeta(\sigma + it)$$

is a \mathbb{C} -valued random variable on [T, 2T].

Fix $\sigma \in \mathbb{R}$. Then the map

$$t \mapsto \log \zeta(\sigma + it)$$

is a \mathbb{C} -valued random variable on [T, 2T].

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T?

Fix $\sigma \in \mathbb{R}$. Then the map

 $t \mapsto \log \zeta(\sigma + it)$

is a \mathbb{C} -valued random variable on [T, 2T].

A classical question in analytic number theory is the following: what is the distribution of this random variable for large T?

This question amounts to asking what is the distributional limit as $T \to \infty$ of the random variables

$${t \mapsto \log \zeta(\sigma + it) : t \in [T, 2T]}_{T>0},$$

if it exists.

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1/2.$

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1/2.$

The case $\sigma > 1$ is relatively straightforward, since $\zeta(s)$ has an Euler product and a Dirichlet series that both converge absolutely.

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1/2.$

The case $\sigma > 1$ is relatively straightforward, since $\zeta(s)$ has an Euler product and a Dirichlet series that both converge absolutely.

The case $\sigma = 1/2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\operatorname{Re}\log\zeta(1/2 + it)$ and $\operatorname{Im}\log\zeta(1/2 + it)$ are both normally distributed with mean 0 and variance $\frac{1}{2}\log\log T$. We will not discuss this further today (it will come up in a later talk in the series).

In light of the functional equation, we can restrict our discussion to $\sigma \geq 1/2.$

The case $\sigma > 1$ is relatively straightforward, since $\zeta(s)$ has an Euler product and a Dirichlet series that both converge absolutely.

The case $\sigma = 1/2$ was considered by Selberg, who proved his Central Limit Theorem: loosely, it says that $\operatorname{Re}\log\zeta(1/2 + it)$ and $\operatorname{Im}\log\zeta(1/2 + it)$ are both normally distributed with mean 0 and variance $\frac{1}{2}\log\log T$. We will not discuss this further today (it will come up in a later talk in the series).

We will thus restrict ourselves to $1/2 < \sigma \leq 1$.

The distribution of log $\zeta(\sigma + it)$ for $\sigma > 1/2$

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let $\sigma > 1/2$ be fixed. Then, the sequence of \mathbb{C} -valued random variables

 $\{t \mapsto \log \zeta(\sigma + it) : t \in [T, 2T]\}_{T>0},$

converges in distribution as $T \to \infty$. Furthermore, the limiting distribution is continuous.

The distribution of log $\zeta(\sigma + it)$ for $\sigma > 1/2$

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let $\sigma > 1/2$ be fixed. Then, the sequence of \mathbb{C} -valued random variables

 ${t \mapsto \log \zeta(\sigma + it) : t \in [T, 2T]}_{T>0},$

converges in distribution as $T \to \infty$. Furthermore, the limiting distribution is continuous.

The main result of Lamzouri, Lester and Radziwiłł[LLR19] is an estimate on the rate of this convergence in the regime $1/2 < \sigma \leq 1$.

The distribution of log $\zeta(\sigma + it)$ for $\sigma > 1/2$

Bohr and Jessen [BJ30] proved the following (paraphrased) theorem:

Theorem

Let $\sigma > 1/2$ be fixed. Then, the sequence of \mathbb{C} -valued random variables

 $\{t \mapsto \log \zeta(\sigma + it) : t \in [T, 2T]\}_{T>0},\$

converges in distribution as $T \to \infty$. Furthermore, the limiting distribution is continuous.

The main result of Lamzouri, Lester and Radziwiłł[LLR19] is an estimate on the rate of this convergence in the regime $1/2 < \sigma \leq 1$.

For simplicity of exposition, we will not consider $\sigma = 1$ in this talk, although the same ideas apply, and are treated in [LLR19].

For $\sigma>$ 1, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$\zeta(s) = \prod_p \left(rac{1}{1-rac{1}{p^s}}
ight)$$

For $\sigma > 1$, we have the following convergent product formula for the Riemann zeta function due to to Euler:

$$\zeta(s) = \prod_p \left(rac{1}{1-rac{1}{p^s}}
ight)$$

Putting $s = \sigma + it$, and rearranging a bit, we get that

$$\zeta(\sigma + it) = \prod_{\rho} \left(\frac{1}{1 - \frac{p^{-it}}{\rho^{\sigma}}} \right)$$

Anurag Sahay (Univ. of Rochester)

What happens when $t \in [T, 2T]$?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

What happens when $t \in [T, 2T]$?

- How do these behave individually?
 - For fixed *n*, and large *T*, they are distributed approximately uniformly.

What happens when $t \in [T, 2T]$?

- How do these behave individually?
 - For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?
 - 2^{-it} and 4^{-it} ?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

• For fixed n, and large T, they are distributed approximately uniformly.

• How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?

• $2^{-it}, 3^{-it}$ and 6^{-it} ?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

• For fixed n, and large T, they are distributed approximately uniformly.

• How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?

•
$$2^{-it}, 3^{-it}$$
 and 6^{-it} ?

• 2^{-it} and 3^{-it} ?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

• For fixed n, and large T, they are distributed approximately uniformly.

• How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?
• 2^{-it} , 3^{-it} and 6^{-it} ?

•
$$2^{-it}$$
 and 3^{-it} ? 5^{-it} and 6^{-it} ?

What happens when $t \in [T, 2T]$?

• How do these behave individually?

- For fixed n, and large T, they are distributed approximately uniformly.
- How do they interact for different values of n?

•
$$2^{-it}$$
 and 4^{-it} ?

•
$$2^{-it}, 3^{-it}$$
 and 6^{-it} ?

•
$$2^{-it}$$
 and 3^{-it} ? 5^{-it} and 6^{-it} ?

In general there is no reason to expect m^{-it} and n^{-it} to show any sort of relationship when m and n are coprime.

The heuristic for why m^{-it} and n^{-it} should behave independently when (m, n) = 1 comes from the following theorem from harmonic analysis:

Theorem (Kronecker-Weyl)

Let $\theta_1, \cdots, \theta_n \in \mathbb{R}$ be linearly independent over \mathbb{Q} . Then the set

$$\{(e(\theta_1 x), \cdots, e(\theta_n x) : x \in \mathbb{R}\}$$

is equidistributed on \mathbb{T}^n , where $e(\cdot) = e^{2\pi i(\cdot)}$ as usual.

Note that $\{\log p : p \text{ prime}\}$ is \mathbb{Q} -linearly independent – this is the fundamental theorem of arithmetic. We conclude that any finite subset of pair-wise coprime integers should behave independently.

This behaviour of p^{-it} as approximately uniform and i.i.d. random variables on [T, 2T] leads to the following definition:

Definition (Random Model for ζ)

Let X be random variable uniformly taking values in \mathbb{T}^{∞} , indexed by the primes. In other words, $X = \{X(p)\}_p$ is a family of independent random variables uniformly distributed on the unit circle in \mathbb{C} , indexed by the primes. We define the \mathbb{C} -valued random variable $\zeta(\sigma, X)$ as follows

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

Definition (Random Model)

Let X be random variable uniformly taking values in $\mathbb{T}^\infty,$ indexed by the primes.Then, we define,

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

Definition (Random Model)

Let X be random variable uniformly taking values in $\mathbb{T}^\infty,$ indexed by the primes.Then, we define,

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma > 1/2$.

Definition (Random Model)

Let X be random variable uniformly taking values in $\mathbb{T}^\infty,$ indexed by the primes.Then, we define,

$$\zeta(\sigma, X) = \prod_{p} \left(\frac{1}{1 - \frac{X(p)}{p^{\sigma}}} \right)$$

It can be shown using probabilistic techniques (e.g., the Kolmogorov 3-series theorem or Chernoff-style concentration bounds) that the above product converges almost surely for $\sigma > 1/2$.

Furthermore, for $\sigma > 1/2$, $\zeta(\sigma, X)$ is a \mathbb{C} -valued random variable with a continuous distribution, and Bohr-Jessen's result [BJ30] is essentially that $\{\log \zeta(\sigma + it)\}_{t \in [T, 2T]} \rightarrow \log \zeta(\sigma, X) \text{ as } T \rightarrow \infty.$

The limit $\{\log \zeta(\sigma + it)\}_{t \in [T,2T]} \to \log \zeta(\sigma, X) \text{ as } T \to \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

The limit $\{\log \zeta(\sigma + it)\}_{t \in [T,2T]} \to \log \zeta(\sigma, X) \text{ as } T \to \infty$ naturally leads one to the question of how large the discrepancy between the distributions of true $\log \zeta$ and the the random model get for a fixed T.

Definition (Discrepancy)

Let $\sigma > 1/2$ be fixed, and T be large. Then,

$$\mathcal{D}_{\sigma}(\mathcal{T}) = \sup_{\mathcal{R}} \left| \mathbb{P}_{\mathcal{T}}\left(\log \zeta(\sigma + it) \in \mathcal{R}
ight) - \mathbb{P}\left(\log \zeta(\sigma, X) \in \mathcal{R}
ight)
ight|$$

where the supremum runs over all axis-parallel rectangles $\mathcal{R}\subseteq\mathbb{C}.$

The Bohr-Jessen result is $D_{\sigma}(T) = o(1)$.

Lamzouri, Lester and Radziwiłł prove the following bound in [LLR19]:

Theorem

Let $1/2 < \sigma < 1$ be fixed. Then $D_\sigma(T) \ll_\sigma rac{1}{(\log T)^\sigma}.$

This improves on an earlier bound by Harman and Matsumoto.

For a real random variable ξ , the characteristic function $\Phi_{\xi}(x)$ is given by

$$\Phi_{\xi}(x) = \mathbb{E}\left(e^{ix\xi}\right).$$

For a real random variable ξ , the characteristic function $\Phi_{\xi}(x)$ is given by

$$\Phi_{\xi}(x) = \mathbb{E}\left(e^{ix\xi}\right).$$

The characteristic function is similar to the moment generating function $M_{\xi}(x) = \mathbb{E}(e^{x\xi})$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

For a real random variable ξ , the characteristic function $\Phi_{\xi}(x)$ is given by

$$\Phi_{\xi}(x) = \mathbb{E}\left(e^{ix\xi}\right).$$

The characteristic function is similar to the moment generating function $M_{\xi}(x) = \mathbb{E}(e^{x\xi})$ but with the advantage that Φ_{ξ} always exists for $x \in \mathbb{R}$, even though the moment generating function need not.

If $F(u) = \mathbb{P}(\xi \le u)$ is the distibution function of ξ on \mathbb{R} , then clearly,

$$\Phi_{\xi}(x) = \int_{-\infty}^{\infty} e^{ixu} dF(u)$$

and so Φ_{ξ} is just the Fourier transform of the measure dF.

When working with complex random variables ξ , the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$\Phi_{\xi}(z) = \mathbb{E}\left(e^{i\operatorname{\mathsf{Re}}\overline{z}\xi}\right)$$

When working with complex random variables ξ , the domain is extended to $z \in \mathbb{C}$, and the definition is changed to

$$\Phi_{\xi}(z) = \mathbb{E}\left(e^{i\operatorname{\mathsf{Re}}\overline{z}\xi}
ight)$$

Taking z = u + iv, and thinking of Φ_{ξ} as a function of two real variables, this is the same as saying

$$\Phi_{\xi}(u,v) = \mathbb{E}\left(e^{i(u\operatorname{\mathsf{Re}}\xi+v\operatorname{\mathsf{Im}}\xi)}\right)$$

This leads us to the following two definitions:

This leads us to the following two definitions:

Definition (Characteristic Function of log $\zeta(\sigma, X)$)

Let $\sigma>1/2$ be fixed. Then, we define

 $\Phi_{\sigma}^{r}(u,v) = \mathbb{E}\left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right).$

This leads us to the following two definitions:

Definition (Characteristic Function of log $\zeta(\sigma, X)$)

Let $\sigma>1/2$ be fixed. Then, we define

 $\Phi_{\sigma}^{r}(u,v) = \mathbb{E}\left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right).$

Definition (Characteristic Function of log $\zeta(\sigma + it)$)

Let $\sigma > 1/2$ and T large be fixed. Then, we define

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_{T} \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right)$$

This leads us to the following two definitions:

Definition (Characteristic Function of log $\zeta(\sigma, X)$)

Let $\sigma>1/2$ be fixed. Then, we define

 $\Phi_{\sigma}^{r}(u,v) = \mathbb{E}\left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right).$

Definition (Characteristic Function of log $\zeta(\sigma + it)$)

Let $\sigma > 1/2$ and T large be fixed. Then, we define

$$\begin{split} \Phi_{\sigma,T}(u,v) &= \mathbb{E}_{T} \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right) \\ &= \frac{1}{T} \int_{T}^{2T} \exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \, dt. \end{split}$$

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_n be a sequence of \mathbb{R}^n -valued random variables, and X be an \mathbb{R}^n -valued random variable, with corresponding characteristic functions Φ_n and Φ . Then,

 $X_n \to X$ in distribution $\iff \Phi_n \to \Phi$ pointwise.

The motivation for considering the characteristic function of $\log \zeta$ comes from the following theorem from probability:

Theorem (Lévy's Convergence Theorem)

Let X_n be a sequence of \mathbb{R}^n -valued random variables, and X be an \mathbb{R}^n -valued random variable, with corresponding characteristic functions Φ_n and Φ . Then,

$X_n \to X$ in distribution $\iff \Phi_n \to \Phi$ pointwise.

Hence, to find the distributional discrepancy in log ζ , one looks for pointwise estimates for the characteristic functions.

We have the following theorem from [LLR19] that tells us that these characteristic functions are not too far apart:

Theorem

Let $1/2 < \sigma < 1$ and $A \ge 1$ be fixed. There exists a constant $b = b(\sigma, A)$ such that for all $|u|, |v| \le b(\log T)^{\sigma}$, we have

$$\Phi_{\sigma,T}(u,v) = \Phi_{\sigma}^r(u,v) + \mathcal{O}\left(rac{1}{(\log T)^A}
ight).$$

Let $Y \ge 0$ be a real number, and define the Dirichlet polynomial $R_Y(\sigma + it)$ by

$$R_{Y}(\sigma + it) = \sum_{n \leq Y} \frac{\Lambda(n)}{n^{\sigma + it} \log n} = \sum_{p^{k} \leq Y} \frac{1}{kp^{k(\sigma + it)}}$$

Anurag Sahay (Univ. of Rochester)

э

Let $Y \ge 0$ be a real number, and define the Dirichlet polynomial $R_Y(\sigma + it)$ by

$$R_Y(\sigma + it) = \sum_{n \le Y} \frac{\Lambda(n)}{n^{\sigma + it} \log n} = \sum_{p^k \le Y} \frac{1}{k p^{k(\sigma + it)}}$$

Correspondingly, we define the random Dirichlet polynomial by

$$R_{Y}(\sigma, X) = \sum_{n \leq Y} \frac{\Lambda(n)X(n)}{n^{\sigma} \log n} = \sum_{p^{k} \leq Y} \frac{X(p)^{k}}{kp^{k\sigma}}$$

Approximating $\Phi_{\sigma,T}$ by Φ_{σ}^{r} : High Level Proof Idea

Proof Idea.

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu \operatorname{\mathsf{Re}} \log \zeta(\sigma+it) + iv \operatorname{\mathsf{Im}} \log \zeta(\sigma+it)
ight)
ight)$$

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right) \\ \approx \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma+it)+iv\operatorname{\mathsf{Im}}R_Y(\sigma+it)\right) \right)$$

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it) + iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right) \right)$$

$$\approx \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma+it) + iv\operatorname{\mathsf{Im}}R_Y(\sigma+it)\right) \right)$$

$$\approx \mathbb{E} \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma,X) + iv\operatorname{\mathsf{Im}}R_Y(\sigma,X)\right) \right)$$

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma+it)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma+it)\right)\right) \\ \approx \mathbb{E}_T \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma+it)+iv\operatorname{\mathsf{Im}}R_Y(\sigma+it)\right)\right) \\ \approx \mathbb{E} \left(\exp\left(iu\operatorname{\mathsf{Re}}R_Y(\sigma,X)+iv\operatorname{\mathsf{Im}}R_Y(\sigma,X)\right)\right) \\ \approx \mathbb{E} \left(\exp\left(iu\operatorname{\mathsf{Re}}\log\zeta(\sigma,X)+iv\operatorname{\mathsf{Im}}\log\zeta(\sigma,X)\right)\right)$$

Then, one can show that for $u, v \ll_{\sigma,A} (\log T)^{\sigma}$,

$$\Phi_{\sigma,T}(u,v) = \mathbb{E}_{T} \left(\exp\left(iu \operatorname{Re}\log\zeta(\sigma+it)+iv \operatorname{Im}\log\zeta(\sigma+it)\right) \right) \\ \approx \mathbb{E}_{T} \left(\exp\left(iu \operatorname{Re} R_{Y}(\sigma+it)+iv \operatorname{Im} R_{Y}(\sigma+it)\right) \right) \\ \approx \mathbb{E} \left(\exp\left(iu \operatorname{Re} R_{Y}(\sigma,X)+iv \operatorname{Im} R_{Y}(\sigma,X)\right) \right) \\ \approx \mathbb{E} \left(\exp\left(iu \operatorname{Re}\log\zeta(\sigma,X)+iv \operatorname{Im}\log\zeta(\sigma,X)\right) \right) \\ = \Phi_{\sigma}^{r}(u,v).$$

Here \approx means up to an acceptable error.

Lemma

Assume RH. Let $1/2 < \sigma \le 1$ be fixed and $1 \ll Y \ll T$. For $t \in [T, 2T]$, we have

$$\log \zeta(\sigma + it) = R_Y(\sigma + it) + \mathcal{O}(Y^{-(\sigma - 1/2)/2} \log^3 T)$$
$$= \sum_{n \leq Y} \frac{1}{k \rho^{k(\sigma + it)}} + \mathcal{O}(Y^{-(\sigma - 1/2)/2} \log^3 T).$$

э.

э

Lemma

Assume RH. Let $1/2 < \sigma \le 1$ be fixed and $1 \ll Y \ll T$. For $t \in [T, 2T]$, we have

$$egin{aligned} & \log \zeta(\sigma+it) = R_Y(\sigma+it) + \mathcal{O}(Y^{-(\sigma-1/2)/2}\log^3 T) \ & = \sum_{n\leq Y}rac{1}{kp^{k(\sigma+it)}} + \mathcal{O}(Y^{-(\sigma-1/2)/2}\log^3 T). \end{aligned}$$

The above equality will hold as long as one stays away from any potential zeroes of $\zeta(s)$. For the application to characteristic functions, one can use a zero-density estimate to remove the need for RH.

Proof Sketch.

By Perron's formula, one has for $c = 1 - \sigma + \frac{1}{\log Y}$,

$$\frac{1}{2\pi i}\int_{c-iY}^{c+iY}\log\zeta(\sigma+it+w)\frac{Y^w}{w}\,dw=$$

イロト イヨト イヨト イヨト

Proof Sketch.

By Perron's formula, one has for $c = 1 - \sigma + \frac{1}{\log Y}$,

$$\frac{1}{2\pi i} \int_{c-iY}^{c+iY} \log \zeta(\sigma + it + w) \frac{Y^w}{w} \, dw = \sum_{p^k \leq Y} \frac{1}{k p^{k(\sigma + it)}} + \mathcal{O}(Y^{-\sigma} \log Y)$$

21st April, 2021 23 / 28

э

A D N A B N A B N A B N

Proof Sketch.

By Perron's formula, one has for $c = 1 - \sigma + \frac{1}{\log Y}$,

$$\frac{1}{2\pi i} \int_{c-iY}^{c+iY} \log \zeta(\sigma + it + w) \frac{Y^w}{w} \, dw = \sum_{p^k \leq Y} \frac{1}{k p^{k(\sigma + it)}} + \mathcal{O}(Y^{-\sigma} \log Y)$$

We can now pull the contour left until a vertical line Re $w = \sigma'$ with $1/2 < \sigma' + \sigma < \sigma$. Because we are assuming no zeroes, the integrand is regular except when w = 0, which gives log $\zeta(\sigma + it)$.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof Sketch.

By Perron's formula, one has for $c = 1 - \sigma + \frac{1}{\log Y}$,

$$\frac{1}{2\pi i} \int_{c-iY}^{c+iY} \log \zeta(\sigma + it + w) \frac{Y^w}{w} \, dw = \sum_{p^k \leq Y} \frac{1}{kp^{k(\sigma+it)}} + \mathcal{O}(Y^{-\sigma} \log Y)$$

We can now pull the contour left until a vertical line Re $w = \sigma'$ with $1/2 < \sigma' + \sigma < \sigma$. Because we are assuming no zeroes, the integrand is regular except when w = 0, which gives log $\zeta(\sigma + it)$.

Thus, using bounds for $\log \zeta$ far away from zeroes, the contribution of the horizontal segments and the new vertical segment can be bounded, giving the desired error.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

Lemma

Let $\frac{1}{2} < \sigma < 1$ and $A \ge 1$ be fixed. Let $Y = (\log T)^A$. There exists a constants $b = b(\sigma, A) > 0$ such that for all complex numbers z_1, z_2 with $|z_1|, |z_2| \ll_{\sigma, A} (\log T)^{\sigma}$ we have

$$\frac{1}{T} \int_{\mathcal{A}(T)} \exp\left(z_1 R_Y(\sigma + it) + z_2 \overline{R_Y(\sigma + it)}\right) dt$$
$$= \mathbb{E}\left(\exp\left(z_1 R_Y(\sigma, X) + z_2 \overline{R_Y(\sigma, X)}\right)\right) + O\left(\exp\left(-b_6 \frac{\log T}{\log \log T}\right)\right)$$

where

$$\mathcal{A}(T) = \{t \in [T, 2T] : |R_Y(\sigma + it)| \le (\log T)^{1-\sigma} / \log \log T\}.$$

イロト イポト イヨト イヨト

3

Lemma

Let $\frac{1}{2} < \sigma < 1$ and $A \ge 1$ be fixed. Let $Y = (\log T)^A$. There exists a constants $b = b(\sigma, A) > 0$ such that for all complex numbers z_1, z_2 with $|z_1|, |z_2| \ll_{\sigma, A} (\log T)^{\sigma}$ we have

$$\frac{1}{T} \int_{\mathcal{A}(T)} \exp\left(z_1 R_Y(\sigma + it) + z_2 \overline{R_Y(\sigma + it)}\right) dt$$
$$= \mathbb{E}\left(\exp\left(z_1 R_Y(\sigma, X) + z_2 \overline{R_Y(\sigma, X)}\right)\right) + O\left(\exp\left(-b_6 \frac{\log T}{\log \log T}\right)\right)$$

where

$$\mathcal{A}(T) = \{t \in [T, 2T] : |R_{Y}(\sigma + it)| \leq (\log T)^{1-\sigma} / \log \log T\}.$$

Putting $z_1 = i(u - iv)/2$ and $z_2 = i(u + iv)/2$, we get (approximately) the characteristic function on both sides.

Anurag Sahay (Univ. of Rochester)

Proof Sketch.

For simplicitly, let's set $z_1 = z$ and $z_2 = 0$. By Taylor's theorem,

$$\exp t \approx \sum_{j \le N} \frac{t^j}{j!}.$$

This approximation works well when $N \gg |t|$.

Proof Sketch.

For simplicitly, let's set $z_1 = z$ and $z_2 = 0$. By Taylor's theorem,

$$\exp t \approx \sum_{j \le N} \frac{t^j}{j!}.$$

This approximation works well when $N \gg |t|$.

Taking $t = zR_Y(\sigma + it)$, we find that t is a Dirichlet polynomial of length $Y = (\log T)^A$, and $t^j = [zR_Y(\sigma + it)]^j$ is of length Y^j .

Proof Sketch.

For simplicitly, let's set $z_1 = z$ and $z_2 = 0$. By Taylor's theorem,

$$\exp t \approx \sum_{j \le N} \frac{t^j}{j!}.$$

This approximation works well when $N \gg |t|$.

Taking $t = zR_Y(\sigma + it)$, we find that t is a Dirichlet polynomial of length $Y = (\log T)^A$, and $t^j = [zR_Y(\sigma + it)]^j$ is of length Y^j .

Thus, exp t is approximately a Dirichlet polynomial of length Y^N for some $N \gg |t|$.

Proof Sketch.

For simplicitly, let's set $z_1 = z$ and $z_2 = 0$. By Taylor's theorem,

$$\exp t \approx \sum_{j \le N} \frac{t^j}{j!}.$$

This approximation works well when $N \gg |t|$.

Taking $t = zR_Y(\sigma + it)$, we find that t is a Dirichlet polynomial of length $Y = (\log T)^A$, and $t^j = [zR_Y(\sigma + it)]^j$ is of length Y^j .

Thus, exp t is approximately a Dirichlet polynomial of length Y^N for some $N \gg |t|$.

We can compute moments of "short" Dirichlet polynomials – say of length $T^{1/3}$. Hence, we can compute the moment of exp *t* provided $Y^N \leq T^{1/3}$.

Proof Sketch.

Taking log, this translates to

$$N\log Y \leq rac{\log T}{3},$$

and hence we need $N \ll_A \frac{\log T}{\log \log T}$ with a sufficiently small implicit constant.

Thus, if we take $|z| \ll_A (\log T)^{\sigma}$ (again with a sufficiently small constant), the constraint that

$$|R_Y(\sigma+it)| \leq \frac{(\log T)^{1-\sigma}}{\log\log T},$$

gives that

$$t = zR_Y(\sigma + it) \ll \frac{\log T}{\log \log T}.$$

Proof Sketch.

Thus, choosing the constants carefully, the problem reduces to showing that

$$\frac{1}{T}\int_{\mathcal{A}(T)}R_{Y}(\sigma+it)^{j}\overline{R_{Y}(\sigma+it)^{\ell}}\,dt\approx\mathbb{E}(R_{Y}(\sigma,X)^{j}\overline{R_{Y}(\sigma,X)^{\ell}}),$$

for $j + \ell \leq N \ll_A \frac{\log T}{\log \log T}$. At this scale, n^{it} is a good harmonic oscillator, and so this can be done.

Thank You!

æ