$$
\begin{aligned}
& \text { 15. Let } A=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \text {. Then } A^{6} \text { is: } \quad D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \\
& \text { A. }\left[\begin{array}{cc}
1 & 1 \\
0 & 64
\end{array}\right] \\
& \text { B. }\left[\begin{array}{cc}
1 & -63 \\
0 & 64
\end{array}\right] \\
& D^{2}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{2}^{2}
\end{array}\right] \\
& \text { C. }\left[\begin{array}{cc}
-1 & -63 \\
0 & -64
\end{array}\right] \\
& D^{3}=D \cdot D^{2}=\left[\begin{array}{cc}
\lambda_{1} & 6 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1}^{2} & 0 & \\
0 & \lambda_{2} & 2
\end{array}\right] \\
& \text { D. }\left[\begin{array}{ll}
1 & 63 \\
0 & 64
\end{array}\right] \\
& \left.\left[\begin{array}{ll}
P \\
1 & 1 \\
0 & 1
\end{array}\right]{ }^{6} \begin{array}{l}
\text { E. }
\end{array} \begin{array}{cc}
1 & 0 \\
0 & 64
\end{array}\right]\left[\begin{array}{cc}
-1 & 63 \\
1 & -1 \\
0 & 1
\end{array}\right] P^{-1}
\end{aligned}
$$

16. Which of the following matrices are diagonalizable?
(i) $\left[\begin{array}{cc}1 & 4 \\ 1 & -2\end{array}\right]$
(ii) $\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$
(iii) $\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 6\end{array}\right]$
(iv) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 2 \\ 3 & 2 & 2\end{array}\right]$
A. (i) and (iii) only
B. (iii) and (iv) only
C. (ii) and (iii) only
D. (i), (ii) and (iv) only
E. (i), (ii), (iii) and (iv)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \\
& \lambda_{1}=1 \\
& \left(A-\lambda_{1} I\right) \vec{x}=0 \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \quad 0 x_{1}+1 x_{2}=0} \\
& \text { - vectar }\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \lambda_{2}=2 \\
& {\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right] \quad-x_{1}+x_{2}=0} \\
& \text { e.vecter }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& A=P D P^{-1} \\
& P=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
\uparrow & \uparrow
\end{array}\right] \\
& D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
& P^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& D^{6}=\left[\begin{array}{ll}
1 & 0 \\
0 & 64
\end{array}\right] \\
& A=P D P^{-1} \\
& \begin{array}{l}
A=P D P \\
A A^{\prime}=\left(P D P^{\prime 1}\right) \cdot\left(P D P^{-1}\right) \cdot \cdots\left(P D P^{-1}\right)=P D^{G} P^{-1}
\end{array}
\end{aligned}
$$

