$$
A A=A\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]=\left[\begin{array}{lll}
A \vec{a}_{1} & \cdots & A \vec{a}_{n}
\end{array}\right]=0
$$

1. Let A be a 4×4 matrix. Which of the following statements is always TRUE?
\Varangle A. The reduced echelon form of A has at least 1 pivot. $\rightarrow A=0$
X B. If $A^{2}=0$ then the system $A \mathrm{x}=0$ as only the trivial solution.
X C. If $A^{2}=A$ then the reduced echelon form of A is $\left.I_{4}.\right] \longrightarrow A=0$
$\sqrt{ }$. If $A^{2}=I_{4}$ then the reduced echelon form of A is I_{4}.
χ E. A is diagonalizable over the complex numbers.

$$
A=\left[\begin{array}{lll}
1 & & 1 \\
& 0 & 1
\end{array}\right]
$$

2. For which of the following five values of the parameter a is the set $\left\{\left[\begin{array}{l}a \\ a \\ a\end{array}\right],\left[\begin{array}{l}1 \\ a \\ a\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ a\end{array}\right]\right\}$ linearly independent?
(i) $a=0$
(ii) $a=1$
(iii) $a=2$
(iv) $a=3$
(v) $a=4$
A. (iv) and (v) only
B. (iii) and (v) only
C. (i), (ii), and (iv) only
D. (ii), (iii), and (iv) only
E. (i), (ii), (iii), and (iv) only
3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $T(\mathbf{x})=\uparrow \mathbf{x}$, where A is the standard matrix for T. Which of the following statements must be TRUE?
$\times \quad$ (i) A is an $n \times m$ matrix.
\rightarrow (ii) If the columns of A are linearly independent, then T is one-to-one.
(iii) If $m>n$, then T is onto.
\times (iv) If $n>m$, then T is one-to-one.

$$
T\left(x_{1}\right)=T\left(x_{2}\right)
$$

(v) If the columns of A span \mathbb{R}^{m}, then T is onto.
\times A. (i), (ii), (iii), (iv), and (v)
X^{B} B. (i), (ii), and (iii) only
C. (ii) and (v) only
\times D. (ii), (iii), and (iv) only
\times E. (iii) and (iv) only
4. Consider the system of linear equations

$$
\begin{aligned}
x+3 y-z & =5 \\
2 x+5 y+a z & =9 \\
x+y+a^{2} z & =a
\end{aligned}
$$

Under which conditions does this system have infinitely many solutions?
A. $a \neq-1$
B. $a \neq 3$
C. $a=-1$
D. $a=3$
E. $\quad a \neq-1$ and $a \neq 3$
9. Which of the following sets of vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is a subspace of \mathbb{R}^{3} ?

(iii) The set of all vectors satisfying $x y z=0$.
(iv) The set of all vectors satisfying $x+y-z^{2}=0$.
(v) The set of all vectors satisfying $x+y-z \geq 0$. (1, 1,0$)$
$\sqrt{\text { A. (i) only }}$
\times B. (i), (iii), (iv), and (v) only
$-2+1-6$
\times C. (i) and (ii) only
\times D. (i) and (v) only
XE. None of them is a subspace of \mathbb{R}^{3}

$$
\begin{aligned}
& (1,1,1) \\
(& (1,2,2) \\
= & (2,3,3)
\end{aligned}
$$

10. The points $(1,2),(2,4),(4,5)$, and $(5,7)$ are the vertices of a parallelogram on the coordinate plane. What is the area of this parallelogram?
A. -3
B. 3
C. 6
D. 0
E. 1
11. Let the transformation $T: \mathbf{x} \rightarrow A \mathbf{x}$ be the composition of a rotation by angle $\theta \in(-\pi, \pi]$, followed by a scaling by the factor $r>0$. If $A=\left[\begin{array}{cc}-9 \sqrt{3} & 9 \\ -9 & -9 \sqrt{3}\end{array}\right]$, find θ and r.

भ. $\theta=-5 \pi / 6, \quad r=18$

$$
\text { 义 } \theta=5 \pi / 6, \quad r=18
$$

$$
\text { Wy } \theta=\pi / 6, \quad r=18
$$

$$
\text { E. } \theta=-\pi / 6, \quad r=18
$$

$$
(1,0)
$$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=(-\lambda-9 \sqrt{3})^{2} \\
&+9^{2}=0 \\
&(\lambda+9 \sqrt{3})^{2}=-9^{2} \\
& \Rightarrow \lambda=-9 \sqrt{3} \pm 9 i \\
& \sqrt{(9 \sqrt{3})^{2}+9^{2}}=\sqrt{2^{2} \cdot 9^{2}} \\
&=18
\end{aligned}
$$

16. Consider the following system of differential equations

$$
\begin{aligned}
x^{\prime}(t) & =4 x(t)+2 y(t) \\
y^{\prime}(t) & =2 x(t)+4 y(t)
\end{aligned}
$$

with the initial condition $x(0)=8, y(0)=2$. What is the value of $x(1)+y(1)$?
A. $10 e^{6}$
B. $10 e^{-6}$
C. $6 e^{6}$
D. $10 e^{6}+6 e^{2}$
E. $6 e^{6}+10 e^{2}$

$$
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\underset{I}{\left.\left[\begin{array}{cc}
-9 \sqrt{3} & 9 \\
-9 & 9 \sqrt{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-9 \sqrt{3} \\
-9
\end{array}\right] .\right] .}
$$

