PROBLEM SESSION FRG GRAD SEMINAR

MODERATOR: OFIR GORODETSKY

April 21, 2024

Problem 1. [Anurag Sahay] Carol Wu [11, Thm. 1.1] proved the following: there exist infinitely many primes $p>q$ such that $p-q$ is 47 -smooth. Can one improve the constant 47 ?

Wu's argument works by optimally using the conclusions of Maynard's generalization of the GPY sieve. To improve the constant, probably one will need to modify the sieve itself.

Henryk Iwaniec suggested a generalization: for which sets S of primes and almost primes, can one guarantee that there are infinitely many primes $p>q$ such that $p-q$ belongs to $\langle S\rangle$, the set generated multiplicatively by elements of S ?
Problem 2. [Henryk Iwaniec] Establish (conditionally or otherwise) an asymptotic large sieve for sequences $a=b * c$ where b has length Q^{2} and c is special and is as long as possible. 'Special' can mean whatever makes the problem tractable, say, 'supported on primes' or 'supported on smooth numbers'.
Problem 3. [Brian Conrey] Given a family \mathcal{F} of L-functions, write $L(f, s)^{k}=$ $\sum_{n} \frac{\lambda_{f, k}(n)}{n^{s}}$. Find a family \mathcal{F} for which one can identify the 2 -swap terms in the average

$$
\underset{\substack{f \in \mathcal{F} \\ \operatorname{cond}(f) \leqslant Q}}{\mathbb{E}} \sum_{n} \frac{\lambda_{f, 20}(n)}{n^{1 / 2+\alpha}} \phi\left(\frac{\log n}{\log X}\right)
$$

where $X=Q^{2+\varepsilon}$ for some $\varepsilon>0$ and $\operatorname{cond}(f)$ is the analytic conductor of f.
Will Sawin suggested using the recent work [2, 9] on quadratic L-functions in $\mathbb{F}_{q}[T]$ as a guide.

Vorappan Chandee suggested a large and promising family could be the family of automorphic L-functions considered by Baluyot-Chandee-Li [1].
Problem 4. [Igor Shparlinski] Let $D(N)=(\log N)^{\log 2+\varepsilon}$. Green and Soundararajan [3] proved that almost all $n \leqslant N$, in natural density sense, are represented by $x^{2}+d y^{2}$ for some $x, y \in \mathbb{Z}$ and $0 \leqslant d \leqslant D(N)$, and this $D(N)$ is optimal. For what function $D(N)$ does this hold for all (and not 'almost all') integers?

Henryk Iwaniec suggested addressing either the 'almost all' or the 'all' version of the problem above with d restricted to primes.

Igor Shparlinksi provided the following suggestion by email: "Assume that we have a version of the results of Hooley, Bykovsky, Duke-Friedlander-Iwaniec for square moduli. That is, we know that the roots of the congruences $x^{2}=n \bmod y^{2}$) are equidistributed, with a power saving, uniformly over n, and for $y \sim Y$. Then there is $c>0$ such that for some $y \sim Y$ there is $x_{0} \ll Y^{2-c}$ and such that $x_{0}^{2}=n \bmod y_{0}^{2}$ for some $y_{0} \sim Y$. This means $x^{2} \ll Y^{4-2 c}$. Thus, we can take
Y of order $n^{1 /(4-2 c)}$ to guarantee that $x_{0}^{2}<n$. Hence for $d=\left(n-x_{0}^{2}\right) / y_{0}^{2}$ we have $n=x_{0}^{2}+d y_{0}^{2}$ and $1 \leqslant d \ll n / Y^{2} \ll n^{1 /(2-c)}$, improving the trivial bound $d \ll n^{1 / 2}$."
Problem 5. [Henryk Iwaniec] Find a counterexample (or, find a proof) for the following version of the large sieve for prime moduli:

$$
\begin{equation*}
\sum_{p \leqslant Q} \sum_{\chi_{0} \neq \chi \bmod p}\left|\sum_{n=1}^{N} \chi(n) a_{n}\right|^{2} \ll\left(\frac{Q^{2}}{\log Q}+N\right) \sum_{n=1}^{N}\left|a_{n}\right|^{2} . \tag{1}
\end{equation*}
$$

This is known for general a_{n} supported on primes $n<Q^{1.9999}$.
Igor Shparlinski asked if it possible to establish (1) with some $o\left(Q^{2}\right)$ in place of $Q^{2} / \log Q$.
Problem 6. [Ofir Gorodetsky] Given $k \geqslant 1$ and a real α, study the variance in short intervals of $d_{k}(n) e(n \alpha)\left(e(t)=e^{2 \pi i t}\right)$. Namely, establish asymptotics for

$$
\frac{1}{X} \int_{X}^{2 X}\left|\sum_{x<n \leqslant x+H} d_{k}(n) e(n \alpha)-(M(x+H)-M(x))\right|^{2} d x
$$

as $X \rightarrow \infty$, where $M(x)$ is a suitable approximation for $\sum_{n \leqslant x} d_{k}(n) e(n \alpha)$. Here $1 \leqslant H \leqslant X$.

For badly approximable α, we expect $M(x) \approx 0$, while for rational numbers $M(x)$ should be taken to be the residue of $F(s) x^{s} / s$ at $s=1$ where $F(s)=$ $\sum_{n} d_{k}(n) e(n \alpha) / n^{s}$.

For $\alpha=0$ this problem was studied by Keating-Rodgers-Roditty-GershonRudnick [6] and others. For $k=2$ and $\alpha \in \mathbb{Q}$ this is partly explored by Kiuchi and Tanigawa [7]. No results seem to be known for $\alpha \notin \mathbb{Q}$.
Problem 7. [Anurag Sahay] Consider the Hurwitz zeta function defined by $\zeta(s, \alpha)=$ $\sum_{n=0}^{\infty}(n+\alpha)^{-s}$. Find $\alpha \notin \mathbb{Q}$ such that

$$
\frac{1}{T(\log T)^{2}} \int_{T}^{2 T}|\zeta(1 / 2+i t, \alpha)|^{4} d t \rightarrow \infty
$$

holds as $T \rightarrow \infty$.
For rational α, the integral grows like $\asymp T \log ^{4} T[10]$ while for $\alpha \notin \mathbb{Q}$ it grows like $\asymp T \log ^{2} T$ if the irrationality measure $\mu(\alpha)$ is less than 3 [5].
Problem 8. [Brad Rodgers] Can we find arbitrarily large N a multiplicative function f taking values in $\{-1,1\}$ (and depending on N) satisfying

$$
\sup _{t}\left|\sum_{n \leqslant N} f(n) e(n t)\right|<2024 \sqrt{N} \log \log N ?
$$

What is the optimal bound?
Sárközy conjectured that $O(\sqrt{N})$ is not achievable. Montgomery conjectured this bound holds for $N=p-1, f(n)=(n / p)$.

Similar questions might be interesting to investigate when f is allowed to take other values (e.g. $-1,0,1$, or roots of unity, or in the unit circle).

Igor Shparlinski asked about other norms (e.g. L^{4}, L^{10}, etc) than the sup-norm in this problem.

Ofir Gorodetsky asked what happens for the Liouville function. Brad Rodgers commented that the recent work of Hardy [4] discusses the correct random model for this problem.

Will Sawin suggested taking a quadratic character with prime modulus p slightly less than N and modifying it so that it is 1 or -1 at p.
Problem 9. [Ofir Gorodetsky] Fix $k \geqslant 1$ and let $n, m \geqslant 1$. Establish asymptotics for

$$
I_{k, 1}(N ; n, m)=\int_{G}\left(\left[u^{n}\right] \operatorname{det}(I-u U)^{k}\right) \overline{\left(\left[u^{m}\right] \operatorname{det}(I-u U)^{k}\right)} d U
$$

and

$$
I_{k, 2}(N ; n)=\int_{G}\left[u^{n}\right]\left(\operatorname{det}(I-u U)^{k}\right) d U
$$

where G is $\mathrm{O}(N)$ or $\operatorname{Sp}(N)$. The motivation is that

$$
I_{k}(N ; n)=\int_{G}\left|\left[u^{n}\right] \operatorname{det}(I-u U)^{k}\right|^{2} d U
$$

was studied for $G=\mathrm{U}(N)$ in [6] by Keating-Rodgers-Roditty-Gershon-Rudnick and for $G=\mathrm{O}(N)$ and $G=\operatorname{Sp}(N)$ in [8] by Kuperberg and Lalin, motivated by questions on the k-fold divisor function. It is easy to see, and is implicit in [6], that $I_{k, 1}(N ; n, m)$ vanishes if $n \neq m$ and $G=\mathrm{U}(N)$, and that similarly $I_{k, 2}(N ; n)$ vanishes if $G=\mathrm{U}(N)$. Moreover, $I_{k}(N, n)=I_{k, 1}(N ; n, n)$ if $G=\mathrm{U}(N)$. However, for the groups $G=\mathrm{O}(N)$ and $G=\operatorname{Sp}(N)$, there is no a priori reason for $I_{k, 1}(N ; n, m)$ and $I_{k, 2}(N ; n)$ to vanish and so these integrals might be interesting to study.

References

[1] Siegfred Baluyot, Vorrapan Chandee, and Xiannan Li. Low-lying zeros of a large orthogonal family of automorphic L-functions. preprint arXiv:2310.07606, 2023.
[2] Jonas Bergström, Adrian Diaconu, Dan Petersen, and Craig Westerland. Hyperelliptic curves, the scanning map, and moments of families of quadratic L-functions. preprint arXiv:2302.07664, 2023.
[3] Ben Green and Kannan Soundararajan. Covering integers by $x^{2}+d y^{2}$. preprint arXiv:2401.04817, 2024.
[4] Seth Hardy. Bounds for exponential sums with random multiplicative coefficients. preprint arXiv:2401.16256, 2024.
[5] Winston Heap and Anurag Sahay. The fourth moment of the Hurwitz zeta function. preprint.
[6] J. P. Keating, B. Rodgers, E. Roditty-Gershon, and Z. Rudnick. Sums of divisor functions in $\mathbb{F}_{q}[t]$ and matrix integrals. Math. Z., 288(1-2):167-198, 2018.
[7] Isao Kiuchi and Yoshio Tanigawa. The mean value theorem of the divisor problem for short intervals. Arch. Math., 71(6):445-453, 1998.
[8] Vivian Kuperberg and Matilde Lalín. Conjectures of sums of divisor functions in $\mathbb{F}_{q}[t]$ associated to symplectic and orthogonal regimes. preprint arXiv:2212.04969, 2022.
[9] Jeremy Miller, Peter Patzt, Dan Petersen, and Oscar Randal-Williams. Uniform twisted homological stability. preprint arXiv:2402.00354, 2024.
[10] Anurag Sahay. Moments of the Hurwitz zeta function on the critical line. Math. Proc. Camb. Philos. Soc., 174(3):631-661, 2023.
[11] Carol Wu. On smooth gaps between primes using the Maynard-Tao sieve. preprint arXiv:2403.19696, 2024.

