NOTES FOR HAESSIG'S TOPICS IN NT

ANURAG SAHAY

Let $(K,\|\cdot\|)$ be a normed field (see [Mon70] for a definition). Since K is a field, we have a canonical map $\mathbb{Z} \rightarrow K$ whose kernel is an ideal of the form $m \mathbb{Z}$ where $m=0$ or $m=p$ is the characteristic of K. Given this canonical map, we will abuse notation and write n for both the integer and the element it maps to in K.

Proposition 1. If $\zeta \in K$ is a root of unity, then $\|\zeta\|=1$.
Proof. First, we prove this for $\zeta=1$. Note that $1=1^{2}$, and hence, $\|1\|=\|1\|^{2}$. Now, $1 \neq 0$, so $\|1\| \neq 0$. Thus, by cancelling, we conclude $\|1\|=1$.

More generally, we have $\zeta^{n}=1$ for some $n \in \mathbb{N}$. Thus,

$$
\|\zeta\|^{n}=\left\|\zeta^{n}\right\|=\|1\|=1
$$

and hence $\|\zeta\|$ is a root of unity in $\mathbb{R}_{\geq 0}$. The only such number is 1 , and hence $\|\zeta\|=1$.

Definition 2. We say that $(K,\|\cdot\|)$ is non-Archimedean if for every $n \in \mathbb{Z}$,

$$
\|n\| \leq 1
$$

Proposition 3. A normed field is non-Archimedean if and only if it satisfies the ultrametric triangle inequality,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for every $x, y \in K$.

Proof. We first prove the easy direction. Note that if $\zeta \in K$ is a root of unity then $\|\zeta\|=1$, and further that $\|0\|=0$. If the ultrametric triangle inequality is true, then by induction, for $n \in \mathbb{N}$,

$$
\|n\| \leq\|1\|=1
$$

Thus, for $n \in \mathbb{Z}$, we get $\|n\| \leq 1$, by recalling that $\|-n\|=\|-1\|\|n\|=$ $\|n\|$.

For the other direction, we will make use of the tensor product trick (see [Tao07]).
We want to leverage the fact that norms behave well with products to amplify the usual triangle inequality

$$
\|x+y\| \leq\|x\|+\|y\|
$$

Consequently, we will use the fact that $\left\|x^{n}\right\|=\|x\|^{n}$ extensively.
In particular, we apply the binomial theorem to $(x+y)^{n}$. Thus, we get that

$$
(x+y)^{n}=\sum_{j}\binom{n}{j} x^{j} y^{n-j}
$$

Now, $\binom{n}{j} \in \mathbb{Z}$, so $\left\|\binom{n}{j}\right\| \leq 1$. Applying the usual triangle inequality together with this fact on the right of the above equality, we get that

$$
\left\|(x+y)^{n}\right\| \leq \sum_{j=0}^{n}\|x\|^{j}\|y\|^{n-j} \leq(n+1) \max \left\{\|x\|^{n},\|y\|^{n}\right\}
$$

Now, raising both sides to $1 / n$,

$$
\|x+y\| \leq(n+1)^{1 / n} \max \{\|x\|,\|y\|\}
$$

However, note that on sending $n \rightarrow \infty,(n+1)^{1 / n} \rightarrow 1$, proving the desired inequality.

Proposition 4. If char $K=p \neq 0$, then for all $n \in \mathbb{Z},\|n\|=1$ or $\|n\|=0$.

Proof. Clearly, we want to show that if $p \nmid n$, then $\|n\|=1$, as otherwise $n=0$ in K, giving us that $\|n\|=0$ as desired.

By Proposition 1, it suffices to show that if $p \nmid n$, then n is a root of unity in K.
However, recall that the image of \mathbb{Z} in K is isomorphic to $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, since $p=$ char K generates the kernel. However, since \mathbb{F}_{p}^{\times}is finite and cyclic, non-zero elements of \mathbb{F}_{p} are roots of unity, and we are done.

This proposition clearly implies that all normed fields of characteristic p are non-Archimedean.

Definition 5. Suppose $(K,\|\cdot\|)$ is non-Archimedean. We define \mathcal{O}_{K} and \mathfrak{m}_{K} as follows

$$
\begin{aligned}
& \mathcal{O}_{K}=\{x \in K:\|x\| \leq 1\}, \\
& \mathfrak{m}_{K}=\{x \in K:\|x\|<1\} .
\end{aligned}
$$

In other words, \mathcal{O}_{K} is the closed unit ball in K and \mathfrak{m}_{K} is the open unit ball in K.

Note that the closure of the open unit ball need not be the closed unit ball. Further, it is obvious that $\mathfrak{m}_{K} \subseteq \mathcal{O}_{K}$, and that \mathcal{O}_{K} contains the image of \mathbb{Z} in K.

Proposition 6. \mathcal{O}_{K} is a valuation ring for K and \mathfrak{m}_{K} is the only maximal ideal of \mathcal{O}_{K}. In other words, \mathcal{O}_{K} is a local integral domain with field of fractions K such that for every $x \in K$ either $x \in \mathcal{O}_{K}$ or $x^{-1} \in \mathcal{O}_{K}$.

Proof. First, we show that \mathcal{O}_{K} is closed under + and \cdot, thereby proving that it is a domain. If $x, y \in \mathcal{O}_{K}$, then, by the ultrametric Δ-inequality,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \leq 1
$$

and further,

$$
\|x y\|=\|x\|\|y\| \leq 1
$$

thus showing that $x+y, x y \in \mathcal{O}_{K}$ as desired.
The proof that \mathfrak{m}_{K} is closed under + is exactly the same with the last \leq replaced by $<$ in both statements. $\mathfrak{m}_{K} \subseteq \mathcal{O}_{K}$ is trivial. To show that $\mathcal{O}_{K} \mathfrak{m}_{K} \subseteq \mathfrak{m}_{K}$, let $x \in \mathcal{O}_{K}$ and $y \in \mathfrak{m}_{K}$. Then,

$$
\|x y\| \leq\|x\|\|y\| \leq\|y\|<1
$$

giving $x y \in \mathfrak{m}_{K}$.
Now, suppose $x \in K$ such that $x \notin \mathcal{O}_{K}$. Thus, $\|x\|>1$. However, then, $\left\|x^{-1}\right\|=\|x\|^{-1}<1$ and hence $x^{-1} \in \mathcal{O}_{K}$. This also shows that K is the field of fractions of \mathcal{O}_{K}.
It remains to show that \mathfrak{m}_{K} is the only maximal ideal in \mathcal{O}_{K}. We use the standard result [AM69, Proposition 1.6] for proving localness. Let $x \in \mathcal{O}_{K}$ such that $x \notin \mathfrak{m}_{K}$. Clearly, $\|x\|=1$, and so, $\left\|x^{-1}\right\|=1$ for $x^{-1} \in K$. In particular, this means that $x^{-1} \in \mathcal{O}_{K}$, and hence x is a unit in \mathcal{O}_{K}. By an application of the result, \mathfrak{m}_{K} is the unique maximal ideal of \mathcal{O}_{K} and we are done.

At this point, we want to solve Exercises 1, 5, 7, 9 from [Kob84, pp. 6-7]. 1 is cumbersome, so we skip that. We note that 7 and 9 follow easily from 5. For 7 , this is because $\|q\|_{p}=\|p\|_{q} 1$ for primes $p \neq q$, while $\|p\|_{p},\|q\|_{q}<1$; for 9 , this is because if $\|n\| \leq 1$ then $\|n\|^{\alpha} \leq 1$ for every $\alpha>0$.

Proposition 7. Let K be a field with two equivalent norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. Then, there exists a real number $\alpha>0$, such that

$$
\|x\|_{1}=\|x\|_{2}^{\alpha}
$$

for every $x \in K$.
Proof. First, we clarify that Koblitz says two norms are equivalent if they have the same Cauchy sequences. In particular, one direction is obvious, since $\|\cdot\|_{1}=\|\cdot\|_{2}^{\alpha}$ obviously implies that the Cauchy sequences are the same. We will prove the contrapositive of the converse. Namely, we will show that if there is no $\alpha>0$ such that $\|x\|_{1}=\|x\|_{2}^{\alpha}$ for every $x \in K$, then there is a sequence that is Cauchy in one norm but not Cauchy in the other.

First, suppose that there is an $x \in K$ such that $\|x\|_{1} \geq 1$ but $\|x\|_{2}<1$. Since $\|x\|_{2}<1, x \neq 1$, and hence $\|1-x\|_{1} \neq 0$. Then, observe that $x^{n} \rightarrow 0$ in $\|\cdot\|_{2}$, and hence, x^{n} is a Cauchy sequence in $\|\cdot\|_{2}$. To see that it is not Cauchy in $\|\cdot\|_{1}$, observe that

$$
\left\|x^{n}-x^{n+1}\right\|_{1} \geq\|x\|_{1}^{n}\|1-x\|_{1}=\|1-x\|>0
$$

is bounded away from 0 no matter how far we choose n.
By inverting elements and flipping the roles of $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, we can now assume that $\|x\|_{1} \sim 1$ is equivalent to $\|x\|_{2} \sim 1$ for every $x \in K$ and any relation $\sim \in\{<,>,=\}$.

Thus, if we assume there is no α satisfying the hypothesis we want it to, it must be the case that there are $x, y \in K$ such that

$$
\begin{aligned}
& \|x\|_{1}=\|x\|_{2}^{\alpha} \\
& \|y\|_{1}=\|y\|_{2}^{\beta}
\end{aligned}
$$

for $\alpha \neq \beta, \alpha, \beta \in \mathbb{R}_{\geq 0}$, and $\|x\|_{j} \neq 1 \neq\|y\|_{j}$ for $j=1,2$.
By replacing x and y with their inverses if necessary, we can further assume that $\|x\|_{1},\|y\|_{1}>1$, and by symmetry we can assume that $\alpha>\beta$.

Now, let $z=x^{m} y^{-n}$ for positive integers m, n to be fixed later. The choice we will make will show that $\|z\|_{2}<1$ and $\|z\|_{1}>1$, which will give us a witness for the inequivalence of the norms, as discussed above.

In particular, since $\|x\|_{2}>1, \log \|x\|_{2}>0$. Thus, $\log \|y\|_{2} / \log \|x\|_{2}$ is a positive real number. Since $\beta<\alpha$, we have that

$$
0<\frac{\beta}{\alpha} \frac{\log \|y\|_{2}}{\log \|x\|_{2}}<\frac{\log \|y\|_{2}}{\log \|x\|_{2}}
$$

Thus, by density, we can choose a rational number m / n with $m, n>0$ such that

$$
0<\frac{\beta}{\alpha} \frac{\log \|y\|_{2}}{\log \|x\|_{2}}<\frac{m}{n}<\frac{\log \|y\|_{2}}{\log \|x\|_{2}}
$$

Rearranging this inequality, we get

$$
\log \|z\|_{2}=m \log \|x\|_{2}-n \log \|y\|_{2}<0
$$

and

$$
\log \|z\|_{1}=m \alpha \log \|x\|_{2}-n \beta \log \|y\|_{2}>0
$$

Applying exp on both inequalities, we are done.

Now, suppose \hat{K} is the metric completion of K. Then, due to continuity of the field operations, \hat{K} is actually a field extension of K, and the norm extends by the natural definition $\|\alpha\|_{\hat{K}}=\lim \left\|\alpha_{n}\right\|_{K}$ where $\alpha_{n} \in$ $K, \alpha_{n} \rightarrow \alpha \in \hat{K}$. We will abuse notation, and refer to both norms by $\|\cdot\|$.

Proposition 8. Let $(\hat{K},\|\cdot\|)$ be the completion of $(K,\|\cdot\|)$. Then, $\mathcal{O}_{\hat{K}}$ and $\mathfrak{m}_{\hat{K}}$ are the topological closures respectively of \mathcal{O}_{K} and $\mathfrak{m}_{\hat{K}}$ under $\|\cdot\|$. Furthermore, $\mathcal{O}_{K} / \mathfrak{m}_{K}$ and $\mathcal{O}_{\hat{K}} / \mathfrak{m}_{\hat{K}}$ are isomorphic.

Proof. In this proof, we denote topological closures by $\urcorner^{.} \mathcal{O}_{K} \subseteq \mathcal{O}_{\hat{K}}$ is obvious, so it suffices to prove that $\mathcal{O}_{\hat{K}} \subseteq \overline{\mathcal{O}_{K}}$. Let $x \in \mathcal{O}_{\hat{K}}$ such that $x_{n} \rightarrow x$ for $x_{n} \in K$. We will show that all but finitely many x_{n} satisfy $x_{n} \in \mathcal{O}_{K}$. Thus, by passing to a subsequence if necessary, we will have shown that x to be a limit of a sequence of elements in \mathcal{O}_{K}, and hence $x \in \mathcal{O}_{\hat{K}}$. To see this, note that, $x_{n}=x+\left(x_{n}-x\right)$, and hence,

$$
\begin{aligned}
\left\|x_{n}\right\| & \leq \max \left\{\|x\|,\left\|x_{n}-x\right\|\right\} \\
& \leq \max \left\{1,\left\|x_{n}-x\right\|\right\} .
\end{aligned}
$$

As $n \rightarrow \infty$, the rightmost term becomes 1 , since $x_{n} \rightarrow x$. Thus, we are done.

Similarly, $\mathfrak{m}_{K} \subseteq \mathfrak{m}_{\hat{K}}$ is obvious. To see $\mathfrak{m}_{\hat{K}} \subseteq \overline{\mathfrak{m}_{K}}$, we repeat the above argument to get that for $x \in \mathfrak{m}_{\hat{K}}, x_{n} \rightarrow x, x_{n} \in K$,

$$
\left\|x_{n}\right\| \leq \max \left\{\|x\|,\left\|x_{n}-x\right\|\right\}
$$

For all large enough $n,\left\|x_{n}-x\right\|<\|x\|$, and since $\|x\|<1$, we get that $\left\|x_{n}\right\| \leq\|x\|<1$, as desired.

The isomorphism from $\mathcal{O}_{K} / \mathfrak{m}_{K}$ to $\mathcal{O}_{\hat{K}} / \mathfrak{m}_{\hat{K}}$ is given by $x+\mathfrak{m}_{K} \mapsto x+$ $\mathfrak{m}_{\hat{K}}$. Well-definedness follows from $\mathfrak{m}_{K} \subseteq \mathfrak{m}_{\hat{K}}$, and ring-homomorphismness is trivial. Thus, it suffices to show that this map is surjective. In particular, it suffices to show that if we have $y \in \mathcal{O}_{\hat{K}}$, then there is an $x \in \mathcal{O}_{K}$ such that $x-y \in \mathfrak{m}_{\hat{K}}$. Thus, $x+\mathfrak{m}_{\hat{K}}=y+\mathfrak{m}_{\hat{K}}$, and hence $y+\mathfrak{m}_{\hat{K}}$ is in the image of hte surjection above.

To do this, recall that we have a sequence $y_{n} \rightarrow y$ such that $y_{n} \in \mathcal{O}_{K}$. In particular, picking n large enough so that $\left\|y_{n}-y\right\|<1$, we can pick $x=y_{n}$, and hence the inequality implies that $x-y \in \mathfrak{m}_{\hat{K}}$ as claimed. This completes the proof.

References

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. 4
[Kob84] Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions, volume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1984. 4
[Mon70] Paul Monsky. p-adic analysis and zeta functions, volume 4 of Lectures in Mathematics, Department of Mathematics, Kyoto University. Kinokuniya Book-Store Co., Ltd., Tokyo, 1970. 1
[Tao07] Terence Tao. Amplification, arbitrage, and the tensor power trick. Blog Post, September 2007. url: https://terrytao.wordpress.com/2007/09/05/amplification-arbitrage-and-the-tensor-power-trick/ (Date Accessed: 3rd Feb, 2021. 2

Department of Mathematics, University of Rochester
Rochester, NY 14627, USA
Email address: asahay@ur.rochester.edu

