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Let (K, ‖·‖) be a normed field (see [Mon70] for a definition). Since K
is a field, we have a canonical map Z→ K whose kernel is an ideal of
the form mZ where m = 0 or m = p is the characteristic of K. Given
this canonical map, we will abuse notation and write n for both the
integer and the element it maps to in K.

Proposition 1. If ζ ∈ K is a root of unity, then ‖ζ‖ = 1.

Proof. First, we prove this for ζ = 1. Note that 1 = 12, and hence,
‖1‖ = ‖1‖2. Now, 1 6= 0, so ‖1‖ 6= 0. Thus, by cancelling, we conclude
‖1‖ = 1.

More generally, we have ζn = 1 for some n ∈ N. Thus,

‖ζ‖n = ‖ζn‖ = ‖1‖ = 1

and hence ‖ζ‖ is a root of unity in R≥0. The only such number is 1,
and hence ‖ζ‖ = 1.

�

Definition 2. We say that (K, ‖·‖) is non-Archimedean if for every
n ∈ Z,

‖n‖ ≤ 1.

Proposition 3. A normed field is non-Archimedean if and only if it
satisfies the ultrametric triangle inequality,

‖x+ y‖ ≤ max{‖x‖ , ‖y‖},

for every x, y ∈ K.
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Proof. We first prove the easy direction. Note that if ζ ∈ K is a root
of unity then ‖ζ‖ = 1, and further that ‖0‖ = 0. If the ultrametric
triangle inequality is true, then by induction, for n ∈ N,

‖n‖ ≤ ‖1‖ = 1.

Thus, for n ∈ Z, we get ‖n‖ ≤ 1, by recalling that ‖−n‖ = ‖−1‖ ‖n‖ =
‖n‖.

For the other direction, we will make use of the tensor product trick
(see [Tao07]).

We want to leverage the fact that norms behave well with products to
amplify the usual triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

Consequently, we will use the fact that ‖xn‖ = ‖x‖n extensively.

In particular, we apply the binomial theorem to (x+y)n. Thus, we get
that

(x+ y)n =
∑
j

(
n

j

)
xjyn−j

Now,
(
n
j

)
∈ Z, so

∥∥∥(nj)∥∥∥ ≤ 1. Applying the usual triangle inequality

together with this fact on the right of the above equality, we get that

‖(x+ y)n‖ ≤
n∑
j=0

‖x‖j ‖y‖n−j ≤ (n+ 1) max{‖x‖n , ‖y‖n}

Now, raising both sides to 1/n,

‖x+ y‖ ≤ (n+ 1)1/n max{‖x‖ , ‖y‖}

However, note that on sending n → ∞, (n + 1)1/n → 1, proving the
desired inequality.

�

Proposition 4. If charK = p 6= 0, then for all n ∈ Z, ‖n‖ = 1 or
‖n‖ = 0.
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Proof. Clearly, we want to show that if p - n, then ‖n‖ = 1, as otherwise
n = 0 in K, giving us that ‖n‖ = 0 as desired.

By Proposition 1, it suffices to show that if p - n, then n is a root of
unity in K.

However, recall that the image of Z in K is isomorphic to Fp = Z/pZ,
since p = charK generates the kernel. However, since F×

p is finite and
cyclic, non-zero elements of Fp are roots of unity, and we are done.

�

This proposition clearly implies that all normed fields of characteristic
p are non-Archimedean.

Definition 5. Suppose (K, ‖·‖) is non-Archimedean. We define OK
and mK as follows

OK = {x ∈ K : ‖x‖ ≤ 1},

mK = {x ∈ K : ‖x‖ < 1}.

In other words, OK is the closed unit ball in K and mK is the open
unit ball in K.

Note that the closure of the open unit ball need not be the closed unit
ball. Further, it is obvious that mK ⊆ OK , and that OK contains the
image of Z in K.

Proposition 6. OK is a valuation ring for K and mK is the only
maximal ideal of OK. In other words, OK is a local integral domain
with field of fractions K such that for every x ∈ K either x ∈ OK or
x−1 ∈ OK.

Proof. First, we show that OK is closed under + and ·, thereby proving
that it is a domain. If x, y ∈ OK , then, by the ultrametric ∆-inequality,

‖x+ y‖ ≤ max{‖x‖ , ‖y‖} ≤ 1,

and further,

‖xy‖ = ‖x‖ ‖y‖ ≤ 1,
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thus showing that x+ y, xy ∈ OK as desired.

The proof that mK is closed under + is exactly the same with the last
≤ replaced by < in both statements. mK ⊆ OK is trivial. To show
that OKmK ⊆ mK , let x ∈ OK and y ∈ mK . Then,

‖xy‖ ≤ ‖x‖ ‖y‖ ≤ ‖y‖ < 1,

giving xy ∈ mK .

Now, suppose x ∈ K such that x /∈ OK . Thus, ‖x‖ > 1. However,
then, ‖x−1‖ = ‖x‖−1 < 1 and hence x−1 ∈ OK . This also shows that
K is the field of fractions of OK .

It remains to show that mK is the only maximal ideal in OK . We use
the standard result [AM69, Proposition 1.6] for proving localness. Let
x ∈ OK such that x /∈ mK . Clearly, ‖x‖ = 1, and so, ‖x−1‖ = 1 for
x−1 ∈ K. In particular, this means that x−1 ∈ OK , and hence x is a
unit in OK . By an application of the result, mK is the unique maximal
ideal of OK and we are done.

�

At this point, we want to solve Exercises 1, 5, 7, 9 from [Kob84, pp.
6-7]. 1 is cumbersome, so we skip that. We note that 7 and 9 follow
easily from 5. For 7, this is because ‖q‖p = ‖p‖q 1 for primes p 6= q,

while ‖p‖p , ‖q‖q < 1; for 9, this is because if ‖n‖ ≤ 1 then ‖n‖α ≤ 1
for every α > 0.

Proposition 7. Let K be a field with two equivalent norms ‖·‖1 and
‖·‖2. Then, there exists a real number α > 0, such that

‖x‖1 = ‖x‖α2

for every x ∈ K.

Proof. First, we clarify that Koblitz says two norms are equivalent if
they have the same Cauchy sequences. In particular, one direction is
obvious, since ‖·‖1 = ‖·‖α2 obviously implies that the Cauchy sequences
are the same. We will prove the contrapositive of the converse. Namely,
we will show that if there is no α > 0 such that ‖x‖1 = ‖x‖α2 for every
x ∈ K, then there is a sequence that is Cauchy in one norm but not
Cauchy in the other.
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First, suppose that there is an x ∈ K such that ‖x‖1 ≥ 1 but ‖x‖2 < 1.
Since ‖x‖2 < 1, x 6= 1, and hence ‖1− x‖1 6= 0. Then, observe that
xn → 0 in ‖·‖2, and hence, xn is a Cauchy sequence in ‖·‖2. To see
that it is not Cauchy in ‖·‖1, observe that

∥∥xn − xn+1
∥∥
1
≥ ‖x‖n1 ‖1− x‖1 = ‖1− x‖ > 0,

is bounded away from 0 no matter how far we choose n.

By inverting elements and flipping the roles of ‖·‖1 and ‖·‖2, we can
now assume that ‖x‖1 ∼ 1 is equivalent to ‖x‖2 ∼ 1 for every x ∈ K
and any relation ∼ ∈ { < , > , = }.

Thus, if we assume there is no α satisfying the hypothesis we want it
to, it must be the case that there are x, y ∈ K such that

‖x‖1 = ‖x‖α2 ,

‖y‖1 = ‖y‖β2 ,

for α 6= β, α, β ∈ R≥0, and ‖x‖j 6= 1 6= ‖y‖j for j = 1, 2.

By replacing x and y with their inverses if necessary, we can further
assume that ‖x‖1 , ‖y‖1 > 1, and by symmetry we can assume that
α > β.

Now, let z = xmy−n for positive integers m,n to be fixed later. The
choice we will make will show that ‖z‖2 < 1 and ‖z‖1 > 1, which will
give us a witness for the inequivalence of the norms, as discussed above.

In particular, since ‖x‖2 > 1, log ‖x‖2 > 0. Thus, log ‖y‖2 / log ‖x‖2 is
a positive real number. Since β < α, we have that

0 <
β

α

log ‖y‖2
log ‖x‖2

<
log ‖y‖2
log ‖x‖2

.

Thus, by density, we can choose a rational number m/n with m,n > 0
such that

0 <
β

α

log ‖y‖2
log ‖x‖2

<
m

n
<

log ‖y‖2
log ‖x‖2

.

Rearranging this inequality, we get
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log ‖z‖2 = m log ‖x‖2 − n log ‖y‖2 < 0,

and

log ‖z‖1 = mα log ‖x‖2 − nβ log ‖y‖2 > 0.

Applying exp on both inequalities, we are done.

�

Now, suppose K̂ is the metric completion of K. Then, due to continuity
of the field operations, K̂ is actually a field extension of K, and the
norm extends by the natural definition ‖α‖K̂ = lim ‖αn‖K where αn ∈
K, αn → α ∈ K̂. We will abuse notation, and refer to both norms by
‖·‖.

Proposition 8. Let (K̂, ‖·‖) be the completion of (K, ‖·‖). Then, OK̂
and mK̂ are the topological closures respectively of OK and mK̂ under
‖·‖. Furthermore, OK/mK and OK̂/mK̂ are isomorphic.

Proof. In this proof, we denote topological closures by ·. OK ⊆ OK̂ is

obvious, so it suffices to prove that OK̂ ⊆ OK . Let x ∈ OK̂ such that
xn → x for xn ∈ K. We will show that all but finitely many xn satisfy
xn ∈ OK . Thus, by passing to a subsequence if necessary, we will have
shown that x to be a limit of a sequence of elements in OK , and hence
x ∈ OK̂ . To see this, note that, xn = x+ (xn − x), and hence,

‖xn‖ ≤ max{‖x‖ , ‖xn − x‖}
≤ max{1, ‖xn − x‖}.

As n→∞, the rightmost term becomes 1, since xn → x. Thus, we are
done.

Similarly, mK ⊆ mK̂ is obvious. To see mK̂ ⊆ mK , we repeat the above
argument to get that for x ∈ mK̂ , xn → x, xn ∈ K,

‖xn‖ ≤ max{‖x‖ , ‖xn − x‖}

For all large enough n, ‖xn − x‖ < ‖x‖, and since ‖x‖ < 1, we get that
‖xn‖ ≤ ‖x‖ < 1, as desired.
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The isomorphism from OK/mK to OK̂/mK̂ is given by x+ mK 7→ x+
mK̂ . Well-definedness follows from mK ⊆ mK̂ , and ring-homomorphismness
is trivial. Thus, it suffices to show that this map is surjective. In par-
ticular, it suffices to show that if we have y ∈ OK̂ , then there is an
x ∈ OK such that x − y ∈ mK̂ . Thus, x + mK̂ = y + mK̂ , and hence
y + mK̂ is in the image of hte surjection above.

To do this, recall that we have a sequence yn → y such that yn ∈ OK .
In particular, picking n large enough so that ‖yn − y‖ < 1, we can pick
x = yn, and hence the inequality implies that x− y ∈ mK̂ as claimed.
This completes the proof. �

References

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.,
1969. 4

[Kob84] Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions, vol-
ume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York,
second edition, 1984. 4

[Mon70] Paul Monsky. p-adic analysis and zeta functions, volume 4 of Lectures in
Mathematics, Department of Mathematics, Kyoto University. Kinokuniya
Book-Store Co., Ltd., Tokyo, 1970. 1

[Tao07] Terence Tao. Amplification, arbitrage, and the ten-
sor power trick. Blog Post, September 2007. url:
https://terrytao.wordpress.com/2007/09/05/amplification-arbitrage-
and-the-tensor-power-trick/ (Date Accessed: 3rd Feb, 2021. 2

Department of Mathematics, University of Rochester
Rochester, NY 14627, USA

Email address: asahay@ur.rochester.edu

https://terrytao.wordpress.com/2007/09/05/amplification-arbitrage-and-the-tensor-power-trick/
https://terrytao.wordpress.com/2007/09/05/amplification-arbitrage-and-the-tensor-power-trick/
mailto:asahay@ur.rochester.edu

	References

