NOTES FOR HAESSIG'S TOPICS IN NT

ANURAG SAHAY

Let $(K, \|\cdot\|)$ be a normed field (see [Mon70] for a definition). Since K is a field, we have a canonical map $\mathbb{Z} \to K$ whose kernel is an ideal of the form $m\mathbb{Z}$ where m = 0 or m = p is the characteristic of K. Given this canonical map, we will abuse notation and write n for both the integer and the element it maps to in K.

Proposition 1. If $\zeta \in K$ is a root of unity, then $\|\zeta\| = 1$.

Proof. First, we prove this for $\zeta = 1$. Note that $1 = 1^2$, and hence, $||1|| = ||1||^2$. Now, $1 \neq 0$, so $||1|| \neq 0$. Thus, by cancelling, we conclude ||1|| = 1.

More generally, we have $\zeta^n = 1$ for some $n \in \mathbb{N}$. Thus,

$$\|\zeta\|^n = \|\zeta^n\| = \|1\| = 1$$

and hence $\|\zeta\|$ is a root of unity in $\mathbb{R}_{\geq 0}$. The only such number is 1, and hence $\|\zeta\| = 1$.

Definition 2. We say that $(K, \|\cdot\|)$ is non-Archimedean if for every $n \in \mathbb{Z}$,

 $\|n\| \le 1.$

Proposition 3. A normed field is non-Archimedean if and only if it satisfies the ultrametric triangle inequality,

$$||x + y|| \le \max\{||x||, ||y||\},\$$

for every $x, y \in K$.

Proof. We first prove the easy direction. Note that if $\zeta \in K$ is a root of unity then $\|\zeta\| = 1$, and further that $\|0\| = 0$. If the ultrametric triangle inequality is true, then by induction, for $n \in \mathbb{N}$,

$$||n|| \le ||1|| = 1.$$

Thus, for $n \in \mathbb{Z}$, we get $||n|| \leq 1$, by recalling that ||-n|| = ||-1|| ||n|| = ||n||.

For the other direction, we will make use of the tensor product trick (see [Tao07]).

We want to leverage the fact that norms behave well with products to amplify the usual triangle inequality

$$||x+y|| \le ||x|| + ||y||.$$

Consequently, we will use the fact that $||x^n|| = ||x||^n$ extensively.

In particular, we apply the binomial theorem to $(x+y)^n$. Thus, we get that

$$(x+y)^n = \sum_j \binom{n}{j} x^j y^{n-j}$$

Now, $\binom{n}{j} \in \mathbb{Z}$, so $\left\|\binom{n}{j}\right\| \leq 1$. Applying the usual triangle inequality together with this fact on the right of the above equality, we get that

$$\|(x+y)^n\| \le \sum_{j=0}^n \|x\|^j \|y\|^{n-j} \le (n+1) \max\{\|x\|^n, \|y\|^n\}$$

Now, raising both sides to 1/n,

$$||x + y|| \le (n+1)^{1/n} \max\{||x||, ||y||\}$$

However, note that on sending $n \to \infty$, $(n+1)^{1/n} \to 1$, proving the desired inequality.

Proposition 4. If char $K = p \neq 0$, then for all $n \in \mathbb{Z}$, ||n|| = 1 or ||n|| = 0.

Proof. Clearly, we want to show that if $p \nmid n$, then ||n|| = 1, as otherwise n = 0 in K, giving us that ||n|| = 0 as desired.

By Proposition 1, it suffices to show that if $p \nmid n$, then n is a root of unity in K.

However, recall that the image of \mathbb{Z} in K is isomorphic to $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, since $p = \operatorname{char} K$ generates the kernel. However, since \mathbb{F}_p^{\times} is finite and cyclic, non-zero elements of \mathbb{F}_p are roots of unity, and we are done.

This proposition clearly implies that all normed fields of characteristic p are non-Archimedean.

Definition 5. Suppose $(K, \|\cdot\|)$ is non-Archimedean. We define \mathcal{O}_K and \mathfrak{m}_K as follows

$$\mathcal{O}_K = \{ x \in K : ||x|| \le 1 \},$$

 $\mathfrak{m}_K = \{ x \in K : ||x|| < 1 \}.$

In other words, \mathcal{O}_K is the closed unit ball in K and \mathfrak{m}_K is the open unit ball in K.

Note that the closure of the open unit ball need not be the closed unit ball. Further, it is obvious that $\mathfrak{m}_K \subseteq \mathcal{O}_K$, and that \mathcal{O}_K contains the image of \mathbb{Z} in K.

Proposition 6. \mathcal{O}_K is a valuation ring for K and \mathfrak{m}_K is the only maximal ideal of \mathcal{O}_K . In other words, \mathcal{O}_K is a local integral domain with field of fractions K such that for every $x \in K$ either $x \in \mathcal{O}_K$ or $x^{-1} \in \mathcal{O}_K$.

Proof. First, we show that \mathcal{O}_K is closed under + and \cdot , thereby proving that it is a domain. If $x, y \in \mathcal{O}_K$, then, by the ultrametric Δ -inequality,

$$||x + y|| \le \max\{||x||, ||y||\} \le 1,$$

and further,

$$||xy|| = ||x|| \, ||y|| \le 1,$$

thus showing that $x + y, xy \in \mathcal{O}_K$ as desired.

The proof that \mathfrak{m}_K is closed under + is exactly the same with the last \leq replaced by < in both statements. $\mathfrak{m}_K \subseteq \mathcal{O}_K$ is trivial. To show that $\mathcal{O}_K \mathfrak{m}_K \subseteq \mathfrak{m}_K$, let $x \in \mathcal{O}_K$ and $y \in \mathfrak{m}_K$. Then,

$$||xy|| \le ||x|| \, ||y|| \le ||y|| < 1,$$

giving $xy \in \mathfrak{m}_K$.

Now, suppose $x \in K$ such that $x \notin \mathcal{O}_K$. Thus, ||x|| > 1. However, then, $||x^{-1}|| = ||x||^{-1} < 1$ and hence $x^{-1} \in \mathcal{O}_K$. This also shows that K is the field of fractions of \mathcal{O}_K .

It remains to show that \mathfrak{m}_K is the only maximal ideal in \mathcal{O}_K . We use the standard result [AM69, Proposition 1.6] for proving localness. Let $x \in \mathcal{O}_K$ such that $x \notin \mathfrak{m}_K$. Clearly, ||x|| = 1, and so, $||x^{-1}|| = 1$ for $x^{-1} \in K$. In particular, this means that $x^{-1} \in \mathcal{O}_K$, and hence x is a unit in \mathcal{O}_K . By an application of the result, \mathfrak{m}_K is the unique maximal ideal of \mathcal{O}_K and we are done.

At this point, we want to solve Exercises 1, 5, 7, 9 from [Kob84, pp. 6-7]. 1 is cumbersome, so we skip that. We note that 7 and 9 follow easily from 5. For 7, this is because $||q||_p = ||p||_q 1$ for primes $p \neq q$, while $||p||_p$, $||q||_q < 1$; for 9, this is because if $||n|| \leq 1$ then $||n||^{\alpha} \leq 1$ for every $\alpha > 0$.

Proposition 7. Let K be a field with two equivalent norms $\|\cdot\|_1$ and $\|\cdot\|_2$. Then, there exists a real number $\alpha > 0$, such that

$$||x||_1 = ||x||_2^{\alpha}$$

for every $x \in K$.

Proof. First, we clarify that Koblitz says two norms are equivalent if they have the same Cauchy sequences. In particular, one direction is obvious, since $\|\cdot\|_1 = \|\cdot\|_2^{\alpha}$ obviously implies that the Cauchy sequences are the same. We will prove the contrapositive of the converse. Namely, we will show that if there is no $\alpha > 0$ such that $\|x\|_1 = \|x\|_2^{\alpha}$ for every $x \in K$, then there is a sequence that is Cauchy in one norm but not Cauchy in the other.

First, suppose that there is an $x \in K$ such that $||x||_1 \ge 1$ but $||x||_2 < 1$. Since $||x||_2 < 1$, $x \ne 1$, and hence $||1 - x||_1 \ne 0$. Then, observe that $x^n \rightarrow 0$ in $||\cdot||_2$, and hence, x^n is a Cauchy sequence in $||\cdot||_2$. To see that it is not Cauchy in $||\cdot||_1$, observe that

$$||x^n - x^{n+1}||_1 \ge ||x||_1^n ||1 - x||_1 = ||1 - x|| > 0,$$

is bounded away from 0 no matter how far we choose n.

By inverting elements and flipping the roles of $\|\cdot\|_1$ and $\|\cdot\|_2$, we can now assume that $\|x\|_1 \sim 1$ is equivalent to $\|x\|_2 \sim 1$ for every $x \in K$ and any relation $\sim \in \{ <, >, = \}$.

Thus, if we assume there is no α satisfying the hypothesis we want it to, it must be the case that there are $x, y \in K$ such that

$$\begin{split} \|x\|_{1} &= \|x\|_{2}^{\alpha}\,,\\ \|y\|_{1} &= \|y\|_{2}^{\beta}\,, \end{split}$$

for $\alpha \neq \beta$, $\alpha, \beta \in \mathbb{R}_{\geq 0}$, and $\|x\|_j \neq 1 \neq \|y\|_j$ for j = 1, 2.

By replacing x and y with their inverses if necessary, we can further assume that $||x||_1$, $||y||_1 > 1$, and by symmetry we can assume that $\alpha > \beta$.

Now, let $z = x^m y^{-n}$ for positive integers m, n to be fixed later. The choice we will make will show that $||z||_2 < 1$ and $||z||_1 > 1$, which will give us a witness for the inequivalence of the norms, as discussed above.

In particular, since $||x||_2 > 1$, $\log ||x||_2 > 0$. Thus, $\log ||y||_2 / \log ||x||_2$ is a positive real number. Since $\beta < \alpha$, we have that

$$0 < \frac{\beta}{\alpha} \frac{\log \|y\|_2}{\log \|x\|_2} < \frac{\log \|y\|_2}{\log \|x\|_2}.$$

Thus, by density, we can choose a rational number m/n with m, n > 0 such that

$$0 < \frac{\beta}{\alpha} \frac{\log \|y\|_2}{\log \|x\|_2} < \frac{m}{n} < \frac{\log \|y\|_2}{\log \|x\|_2}$$

Rearranging this inequality, we get

$$\log \|z\|_2 = m \log \|x\|_2 - n \log \|y\|_2 < 0,$$

and

$$\log \|z\|_1 = m\alpha \log \|x\|_2 - n\beta \log \|y\|_2 > 0.$$

Applying exp on both inequalities, we are done.

Now, suppose \hat{K} is the metric completion of K. Then, due to continuity of the field operations, \hat{K} is actually a field extension of K, and the norm extends by the natural definition $\|\alpha\|_{\hat{K}} = \lim \|\alpha_n\|_K$ where $\alpha_n \in$ $K, \alpha_n \to \alpha \in \hat{K}$. We will abuse notation, and refer to both norms by $\|\cdot\|$.

Proposition 8. Let $(\hat{K}, \|\cdot\|)$ be the completion of $(K, \|\cdot\|)$. Then, $\mathcal{O}_{\hat{K}}$ and $\mathfrak{m}_{\hat{K}}$ are the topological closures respectively of \mathcal{O}_{K} and $\mathfrak{m}_{\hat{K}}$ under $\|\cdot\|$. Furthermore, $\mathcal{O}_{K}/\mathfrak{m}_{K}$ and $\mathcal{O}_{\hat{K}}/\mathfrak{m}_{\hat{K}}$ are isomorphic.

Proof. In this proof, we denote topological closures by $\overline{\cdot}$. $\mathcal{O}_K \subseteq \mathcal{O}_{\hat{K}}$ is obvious, so it suffices to prove that $\mathcal{O}_{\hat{K}} \subseteq \overline{\mathcal{O}_K}$. Let $x \in \mathcal{O}_{\hat{K}}$ such that $x_n \to x$ for $x_n \in K$. We will show that all but finitely many x_n satisfy $x_n \in \mathcal{O}_K$. Thus, by passing to a subsequence if necessary, we will have shown that x to be a limit of a sequence of elements in \mathcal{O}_K , and hence $x \in \mathcal{O}_{\hat{K}}$. To see this, note that, $x_n = x + (x_n - x)$, and hence,

$$||x_n|| \le \max\{||x||, ||x_n - x||\} \le \max\{1, ||x_n - x||\}.$$

As $n \to \infty$, the rightmost term becomes 1, since $x_n \to x$. Thus, we are done.

Similarly, $\mathfrak{m}_K \subseteq \mathfrak{m}_{\hat{K}}$ is obvious. To see $\mathfrak{m}_{\hat{K}} \subseteq \overline{\mathfrak{m}_K}$, we repeat the above argument to get that for $x \in \mathfrak{m}_{\hat{K}}, x_n \to x, x_n \in K$,

$$||x_n|| \le \max\{||x||, ||x_n - x||\}$$

For all large enough n, $||x_n - x|| < ||x||$, and since ||x|| < 1, we get that $||x_n|| \le ||x|| < 1$, as desired.

The isomorphism from $\mathcal{O}_K/\mathfrak{m}_K$ to $\mathcal{O}_{\hat{K}}/\mathfrak{m}_{\hat{K}}$ is given by $x + \mathfrak{m}_K \mapsto x + \mathfrak{m}_{\hat{K}}$. Well-definedness follows from $\mathfrak{m}_K \subseteq \mathfrak{m}_{\hat{K}}$, and ring-homomorphismness is trivial. Thus, it suffices to show that this map is surjective. In particular, it suffices to show that if we have $y \in \mathcal{O}_{\hat{K}}$, then there is an $x \in \mathcal{O}_K$ such that $x - y \in \mathfrak{m}_{\hat{K}}$. Thus, $x + \mathfrak{m}_{\hat{K}} = y + \mathfrak{m}_{\hat{K}}$, and hence $y + \mathfrak{m}_{\hat{K}}$ is in the image of hte surjection above.

To do this, recall that we have a sequence $y_n \to y$ such that $y_n \in \mathcal{O}_K$. In particular, picking *n* large enough so that $||y_n - y|| < 1$, we can pick $x = y_n$, and hence the inequality implies that $x - y \in \mathfrak{m}_{\hat{K}}$ as claimed. This completes the proof.

References

- [AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. 4
- [Kob84] Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions, volume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1984. 4
- [Mon70] Paul Monsky. p-adic analysis and zeta functions, volume 4 of Lectures in Mathematics, Department of Mathematics, Kyoto University. Kinokuniya Book-Store Co., Ltd., Tokyo, 1970. 1
- [Tao07] Terence Tao. Amplification, arbitrage, and the tenpower trick. Blog Post, September 2007.url: sor https://terrytao.wordpress.com/2007/09/05/amplification-arbitrageand-the-tensor-power-trick/ (Date Accessed: 3rd Feb, 2021. 2

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER ROCHESTER, NY 14627, USA

Email address: asahay@ur.rochester.edu