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This document is a record of the topics read by in the Theory of Partitions
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Chapter 1

Introduction

The Theory of Partitions is a very researched sub-field of Additive Num-
ber Theory, and is historically known for some of Hardy and Ramanujan’s
asymptotic results. The Rademacher formula for the partition function is
an astonishing result in Partition Theory, the crowning achievement of the
so-called Hardy-Littlewood Circle Method. This report documents some of
these famous results.

Any result listed in this report, unless otherwise specified, has been
proved either in Chapter 14 of [1] or Chapter 5 of [2]. Furthermore, if
the result is listed in this report, we have understood the proof of the result,
and grasped at least some of the motivation behind it.

Three theorems in this report have been marked with a star (?). This
indicates that the proofs of these propositions is not in the above-mentioned
chapters, and furthermore, said proofs are considerably involved, moreso
than the rest of the project. While we have skimmed through the proofs
of these propositions, and will eventually do them properly, this reading
has been deferred until after the project is over. A detailed study of these
proofs would involve more time and effort than has already been put into
the project. Thus, both these results have been taken for granted for the
purposes of this project.

The second chapter of the report focuses on the results contained in
Chapter 14 of [1]. The third chapter focuses on the proof of Rademacher’s
formula given in Chapter 5 of [2], as well as some other ancillary reading
from that book required to understand parts of the book.

Remarks are used to point out specific information about theorems, and
to provide basic proof outlines where necessary.
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Chapter 2

Preliminary Results in
Partition Theory

2.1 Introduction

The results enumerated in this chapter are from Chapter 14 of [1], entitled
‘Partitions’. The chapter begins by giving some background on the field of
Additive Number Theory in general, mentioning and stating some histori-
cally influential conjectures and problems, such as the Goldbach Conjecture,
the representation of positive integers as sums of squares, and Waring’s prob-
lem.

The unrestricted partition function p(n) is defined the the following way.

Definition 2.1. The unrestricted partition function p(n) is the number of
ways n can be written as a sum of positive integers ≤ n, that is, the number
of solutions of

n = a1 + a2 + · · ·

The number of summands is unrestricted, repetition is allowed and the order
of the summands is not taken into account.

The analysis of p(n) forms the majority of the remaining chapter. The
chapter begins with the geometric representation of partitions, commonly
known as a Ferrers diagram, and uses combinatorial methods to intuitively
prove the first theorem of the chapter. The ordinary generating function
for partitions is obtained, first with a proof assuming the generating func-
tion to be a formal power series, and then by considering the questions of
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CHAPTER 2. PRELIMINARY RESULTS IN PARTITION THEORY 5

convergence. The celebrated Pentagonal Number Theorem of Euler is then
proved, and used immediately to derive Euler’s recursion formula for p(n).
In the next section, an elementary upper bound for p(n) is obtained and a
proof of Jacobi’s triple product identity, a generalization of Euler’s theorem,
is given. The penultimate section deals with a general recurrence formula
obtained by the logarithmic differentiation of generating function. In the
final section, the remarkable division identites of Ramanujan are listed and
a proof is outlined in the exercises.

One of the remarkable asymptotic formulas for p(n), originally by Hardy
and Ramanujan is

p(n) ∼ eK
√
n

4n
√

3

as n→∞ where K = π
(
2
3

) 1
2

This beautiful formula is stated in [1] and an extension is proved an
extension of this in [2].

2.2 Major Results

Theorem 2.1. The number of partitions of n into m parts is equal to the
number of partions of n into parts of which the largest is m.

Remark 2.1. This is a simple and basic application of the Ferrers diagrams;
it is obtained by flipping the Ferrers diagram about it’s diagonal.

Theorem 2.2 (Euler). For |x| < 1 we have

∞∏
m=1

1

1− xm
=
∞∑
n=0

p(n)xn,

where p(0) = 1

Definition 2.2. For all n ∈ Z, the pentagonal numbers ω(n) is defined by
the formula

ω(n) =

n−1∑
k=0

(3k + 1) =
3n(n− 1)

2
+ n =

3n2 − n
2
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Lemma 2.1. For |x| < 1

∞∏
m=1

(1− xm) = 1 +
∞∑
n=1

(pe(n)− po(n))xn

where pe(n) and po(n) are respectively the number of partitions of n into
even number of unequal parts and odd number of unequal parts.

Remark 2.2. This can be seen by noting that for any given odd partition,
the term corresponding to that on the left is negative, while for any even
partition, the term corresponding to that on the left is positive.

Theorem 2.3 (Euler’s Pentagonal Number Theorem). If |x| < 1 we have

∞∏
m=1

(1− xm) = 1− x− x2 + x5 + x7 − x12 − x15 + · · ·

= 1 +

∞∑
n=1

(−1)n(xω(n) + xω(−n))

=
∞∑

n=−∞
(−1)nxω(n)

Remark 2.3. From the previous lemma, this theorem follows by constructing
a bijection between the odd partition function and the even partition func-
tion for positive integers which are not pentagonal numbers, and showing
that the bijection does not work for exactly one partition for the positive
integers which are pentagonal numbers.

Theorem 2.4. Let p(0) = 1 and define p(n) = 0 if n < 0. Then, for n ≥ 1
we have

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7) + · · · = 0

or, equivalently

p(n) =
∞∑
k=1

(−1)k
(
p(n− ω(k)) + p(n− ω(−k))

)
Remark 2.4. This theorem is an easy corrolary of Euler’s Pentagonal Num-
ber Theorem by noting the fact that the left hand side of the equality is the
generating function of p(n) and using simple generating function methods.
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Theorem 2.5. If n ≥ 1 we have p(n) < eK
√
n, where K = π

(
2
3

) 1
2

Remark 2.5. The author motivates this upper bound by referring to Hardy
and Ramanujan’s asymptotic relation, and by noting p(n)xn <

∑∞
k=0 p(n)xn,

proves the bound using relatively elementary arguments.

Remark 2.6. The author also proves the stronger bound

p(n) <
πeK

√
n√

6(n− 1)

for n > 1, by a slight change in the base inequality.

Theorem 2.6 (Jacobi’s triple product identity). For complex x and z with
|x| < 1 and z 6= 0 we have

∞∏
n=1

(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) =

∞∑
m=−∞

xm
2
z2m

Theorem 2.7. For a given set A and a given arithmetical function f , the
numbers defined by the equation∏

n∈A
(1− xn)−

f(n)
n = 1 +

∞∑
n=1

pA,f (n)xn

satisfy the recursion formula

npA,f (n) =
n∑
k=1

fA(k)pA,f (n− k)

where pA,f (0) = 1 and

fA(k) =
∑

d|k,d∈A

f(d)

Remark 2.7. The basic proof relies on an assumption of absolute convergence
everywhere and basically involved logarithmic differentiation of the product
followed by an interchange of sums.

Remark 2.8. If f(n) = n, then pA,f (n) = p(n) and fA(k) = σ(k). Hence,

np(n) =

n∑
k=1

σ(k)p(n− k)

a remarkable relation connecting a function of multiplicative number theory
with one of additive number theory.
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2.3 Ramanujan’s Partition Identities

The chapter ends with a discussion of Ramanujan’s striking divisibility iden-
tities, obtained by a detailed examination of MacMohan’s table of the par-
tition, which was purportedly obtained by hand.

He states three of Ramanujan’s identities, specifically,

p(5m+ 4) ≡ 0 (mod 5)

p(7m+ 5) ≡ 0 (mod 7)

p(11m+ 6) ≡ 0 (mod 11)

He further mentions two connected identities of Ramanujan:

∞∑
m=0

p(5m+ 4)xm = 5
ϕ(x5)5

ϕ(x)6

∞∑
m=0

p(7m+ 5)xm = 7
ϕ(x7)3

ϕ(x)4
+ 49x

ϕ(x7)7

ϕ(x)8

where

ϕ(x) =
∞∏
n=1

(1− xn)



Chapter 3

Rademacher’s Exact Formula

3.1 Introduction

Rademacher’s formula for the unrestricted partition function, as given in
Chapter 5 of [2] is an astonishing formula: looking at it, it is hard to believe
it is even an integer, let alone p(n). The formula is given in the following
theorem.

Theorem 3.1. If n ≥ 1, then p(n) is given by the convergent series

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


where

Ak(n) =
∑

0≤h<k
(h,k)=1

eπis(h,k)−2πinh/k

and s(h, k) is a Dedekind sum, given by

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
The author begins the chapter on a historical note, describing the re-

markable form of the asymptotic formulae obtained by Hardy and Ramanu-
jan using the so-called ‘Hardy-Littlewood Circle Method’, going on to relate
how Rademacher’s change in the analysis of the problem caused the asymp-
totic formula to become exact. He gives a plan of the proof in general, and
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CHAPTER 3. RADEMACHER’S EXACT FORMULA 10

then gets down to the proof itself. The proof of the formula is both hard
and non-intuitive, and the presentation does not help motivate the methods
used, but merely contains Rademacher’s brilliant ideas. The proof uses, in
a critical manner, three things: the functional equation of the Dedekind eta
function, η(τ), under the group of modular transformations, Farey fractions,
and Ford Circles. The Dedekind eta function arises in the problem naturally

from it’s definition. It is given by

Definition 3.1. If H = {τ : Im(τ) > 0} is the upper half plane in the
Argand plane, the Dedekind eta function is defined as

η(τ) = eiπτ/12
∞∏
n=1

(1− e2πinτ )

where τ ∈ H

Remark 3.1. From Theorem 2.2, it is clear that

F (x) =

∞∏
m=1

1

1− xm
=
eiπτ/12

η(τ)

where x = e2πiτ .

We will document the proof of Rademacher’s formula in the following
manner: Sections 3.2, 3.3 and 3.4 will detail the background to understand-
ing the proof, Section 3.5 will detail the path of integration and a series of
lemmas that are used in the proof and Section 3.6 will detail an outline of
the proof assuming the lemmas of Section 3.5.

3.2 Dedekind’s Functional Equation

The functional equation satisfied by the Dedekind eta function is given by

Theorem 3.2 (?). If ad − bc = 1 for a, b, c, d ∈ Z, c > 0 and τ ∈ H, we
have

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)[−i(cτ + d)]1/2η(τ)

where
ε = eπi(

a+d
12c

+s(−d,c))

and

s(h, k) =

k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
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Taking reciprocals, choosing a = H, c = k, d = −h, b = −hH+1
k and τ = iz+h

k
and replacing z by z/k, we get

Theorem 3.3. Let

x = exp

(
2πih

k
− 2πz

k2

)
, x′ = exp

(
2πiH

k
− 2π

z

)
where Re(z) > 0, k > 0, (h, k) = 1, and hH ≡ −1 (mod k). Then

F (x) = eπis(h,k)
(z
k

)1/2
exp

( π

12z
− πz

12k2

)
F (x′)

Remark 3.2. The essential part of this theorem is that if |z| is small, x lies
near the root of unity e2πih/k and x′ lies near the origin. Hence, aside from
a constant factor, F (x) behaves like z1/2e

π
12z . In the proof, F (x) will be

replaced by this elementary function, and the resulting error in the answer
will be obtained; it will so happen that the error will vanish when a certain
quantity will be allowed to go to infinity.

3.3 Farey Fractions

Farey fractions are a common occurence in Number Theory. They are de-
fined in the following manner.

Definition 3.2. The set of Farey fractions of order n denoted Fn, is the
set of reduced fractions in the closed interval [0, 1] with denominators ≤ n
listed in increasing order of magnitude.

The author proves some elementary theorems about Farey fractions which
are easily obtained and generally known in order to prove one specific the-
orem, which is the following.

Theorem 3.4. The set Fn+1 includes Fn. Each fraction in Fn+1 which is
not in Fn is a mediant1 of a pair of consecutive fractions in Fn. Moreover,
if a/b < c/d are consecutive in Fn, then they satisfy the unimodular relation
bc− ad = 1.

The major use of Farey fractions in the proof comes from this theorem, and
the intimate connection between Farey fractions and Ford circles.

1The mediant of two reduced fractions a/b and c/d is the fraction (a+ c)/(b+ d).
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3.4 Ford Circles

Like Farey fractions, Ford circles are also a common occurrence in Number
Theory, and are intimately connected with the Farey fractions. They are
defined in the following manner.

Definition 3.3. Given a rational number h/k with (h, k) = 1, the Ford
circle belonging to this fraction is denoted by C(h, k) and is that circle in the
complex plane with radius 1/(2k2) and center at the point (h/k) + i/(2k2).

The following theorem makes explicit the relationship between Ford circles
and Farey fractions.

Theorem 3.5. Two Ford circles C(a, b) and C(c, d) are either tangent to
each other or they do not intersect. They are tangent if, and only if, bc−ad =
±1. In particular, Ford circles of consecutive Farey fractions are tangent to
each other.

Remark 3.3. This can be easily seen by using the distance formula between
the centers of two Ford circles and comparing it with the sum of their two
radii.

The points of tangency between two Ford circles (as given in the following
theorem) are required as the construction of Rademacher’s path of integra-
tion depends crucially on it.

Theorem 3.6. Let h1/k1 < h/k < h2/k2 be three consecutive Farey frac-
tions. The points of tangency of C(h, k) with C(h1, k1) and C(h2, k2) are
the points

α1(h, k) =
h

k
− k1
k(k2 + k21)

+
i

k2 + k21

and

α2(h, k) =
h

k
+

k2
k(k2 + k22)

+
i

k2 + k22

Moreover, α1(h, k) lies on the semicircle whose diameter is the interval
[h1/k1, h/k]

3.5 The path of integration and other results

The path of integration used by Rademacher is ingenious. The basic idea is
to construct a path from i to i+1 on the imaginary plane by travelling along
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the Ford circles associated with a sequence of Farey fractions. The explicit
constructions is the following: Choose a positive integer N and consider
the set of Farey fractions of order N . For each Farey fraction, consider the
corresponding Ford circle. The points of tangency of this circle with those
circles corresponding to the preceding and succeeding Farey fraction divides
the Ford circle into two halves: the lower arc, touching the real axis, and the
upper arc. The path, P (N), is the union of all such upper arcs obtained.
With this path of integration, we can now state a few easily proven results
which will help in estimating the integrals arising in the proof.

Theorem 3.7. The transformation

z = −ik2
(
τ − h

k

)
maps the Ford circle C(h, k) in the τ -plane onto a circle K in the z-plane of
radius 1/2 about the point z = 1

2 as the center. Further, the point α1(h, k)
and α2(h, k) are mapped onto the points

z1(h, k) =
k2

k2 + k21
+ i

kk1
k2 + k21

and

z2(h, k) =
k2

k2 + k22
− i kk2

k2 + k22

Theorem 3.8. For the points z1 and z2 we have

|z1(h, k)| = k√
k2 + k21

, |z2(h, k)| = k√
k2 + k22

Moreover, if z is a point on the chord joining z1 and z2, we have

|z| <
√

2k

N

The length of this chord does not exceed 2
√

2k/N

3.6 Outline of the Proof

The starting point behind the proof is a Laurent series, specifically, from
Theorem 2.2, we have for each n ≥ 0, if 0 < |x| < 1
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F (x)

xn+1
=

∞∑
k=0

p(k)xk−n−1

This function has a pole at x = 0 with residue p(n), hence, by Cauchy’s
residue theorem we get

p(n) =
1

2πi

∮
C

F (x)

xn+1
dx

where C is any positively oriented simple closed contour which lies inside
the unit circle and winds once around the origin. The Hardy-Littlewood
circle method chooses a circular contour with radius close to 1. Since the
denominator of F (x) vanishes at every root of unity, each of them form a
singularity for F (x). This contour is divided into arcs Ch,k which lie near
the roots of unity e2πih/k for the reduced fraction h/k. Then, after fixing
some integer N , the integral can be written as the finite sum,∮

C
=
∑
h
k
∈FN

∫
Ch,k

As noted in Remark 3.2, on the arcs Ch,k, F (x) behaves remarkably like an
elementary function ζh,k. To make this notion rigorous, the author does the
following steps.

First, the change of variable x = e2πiτ . This maps a circle going counter-
clockwise with radius e−2π centered at the origin in the x-plane to the line
segment going from i to i+ 1 in the τ -plane. This segment is now replaced
by Rademacher’s path of integration P (N). This gives

p(n) =

∫
P (N)

F (e2πiτ )e−2πinτdτ

Furthermore, we have ∫
P (N)

=
∑
h
k
∈FN

∫
γh,k

where γh,k denotes the upper arc of the Ford circle C(h, k).

Next, the author applies the transformation z = −ik2(τ − h/k) and then
shows through a series of involved calculations entailing the functional equa-
tion that
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p(n) =
∑
h
k
∈FN

ik−5/2ω(h, k)e−2πinh/k(I1(h, k) + I2(h, k))

where

ω(h, k) = eπis(h,k)

I1(h, k) =

∫
γh,k

ξk(z)e
2nπz/k2dz

I2(h, k) =

∫
γh,k

ξk(z)

{
F

(
exp

(
2πiH

k
− 2π

z

))
− 1

}
e2nπz/k

2
dz

ξk(z) = z1/2 exp
( π

12z
− πz

12k2

)
Here the I1(h, k) term is what we get when we replace F by the elementary
function. The error term represented by I2(h, k) must be estimated. It can
be shown using the bounds on the chord joining z1(h, k) and z2(h, k) that
the integrand in I2(h, k) is < c|z|1/2 where c does not depend on z or N .
The path in I2(h, k) can be continuously deformed into the chord joining the
two end-points without changing the value of the integral, hence we easily
obtain the bound

|I2(h, k)| < Ck3/2N−3/2

for some constant C.

Hence, the total error introduced is

∣∣∣∣∣∣∣
∑
h
k
∈FN

ik−5/2ω(h, k)e−2πinh/kI2(h, k)

∣∣∣∣∣∣∣ <
∑
h
k
∈FN

Ck−1N−3/2

≤ CN−3/2
N∑
k=1

1

= CN−1/2

Hence the error introduced is O(N−1/2).
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Furthermore, for the integral I1(h, k), the author introduces the entire circle
K clockwise as the path of integration, and shows in a similar manner that
the error introduced is O(N−1/2).

Remark 3.4. At this point, it is prudent to point out something not men-
tioned in the text: the integral along the circle K is an improper integral
since the integrand of I1(h, k) has an essential singularity at the point z = 0.
This becomes more explicit later when a change of variable is introduced.

Here, the author lets N →∞ to obtain

p(n) = i
∞∑
k=1

Ak(n)k−5/2
∮
K
z1/2 exp

(
π

12z
+

2πz

k2

(
n− 1

24

))
dz

where

Ak(n) =
∑

0≤h<k
(h,k)=1

eπis(h,k)−2πinh/k

The author then refers to the following formula in Watson’s treatise on
Bessel function.

Theorem 3.9 (?).

Iν(z) =

(
z
2

)ν
2πi

∫ c+i∞

c−i∞
t−ν−1et+(z2/4t)dt

if c > 0, Re(ν) > 0 and Iν(z) = i−νJν(iz).

Now the transformation w = 1/z turns the integral into the form shown in
this theorem, with

z

2
=

{
π2

6k2

(
n− 1

24

)}1/2

and ν = 3/2.

Remark 3.5. This fact shows that the integral around K was an improper
integral in disguise. Further, it gives some insight to why the author chose
to map all Ford circles to the circle K. The act of taking the reciprocal
is equivalent to the composition of two acts: inversion (in the geometric
sense) about the unit circle, followed by conjugation (or reflection about
the real axis). It is well-known that inversion maps generalized circles to
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generalized circles, and hence, that reciprocation would map the circle K to
the straight line perpendicular to the real axis passing through z = 1 over
which the Bessel function’s integral is given.

Theorem 3.10 (?). Bessel functions of half-odd order can be reduced in
terms of elementary functions. Specifically,

I3/2(z) =

√
2z

π

d

dz

(
sinh z

z

)
Putting this all together gives Rademacher’s formula:

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


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