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Notation

We shall describe here the notation that we will need that a layperson may
not be familiar with.

We will use many standard notations from number theory. In particular,
our asymptotic notation will always be as some parameter x goes to infinity.
We shall use

f(x) = O(g(x))

to mean that there exists some positive constant C such that |f(x)| ≤ Cg(x)
for sufficiently large x. Such an estimate is called a “big-oh estimate”. We
also use f � g and g � f to mean the same thing.

We use

f(x) = o(g(x))

to mean that f(x)/g(x)→ 0 as x→∞. Such an estimate is called a “little-
oh estimate”, and being o(g(x)) is strictly stronger than being O(g(x)).
However, little-oh estimates are qualitative statements, and not very good
for calculation. Hence, in practice, one always use more precise big-oh esti-
mates for calculation (ie, with a smaller g(x)) and only return to the little-oh
estimate in the last step to give a neater but strictly weaker estimate in the
end, if at all. (See for example, the Prime Number Theorem).

We will often write

f(x) = g(x) +O(h(x)) or f(x) = g(x) + o(h(x))
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to mean that there exists a function p(x) which is respectively = O(h(x))
or = o(h(x)) such that f(x) = g(x) + p(x).

Finally we use

f(x) ∼ g(x)

interchangeably with

f(x) = g(x) + o(g(x))

to denote the asymptotic equality f(x)/g(x)→ 1 as x→∞.

We use (a, b) to denote the greatest common divisor of a and b and ϕ(n) for
Euler’s totient function,

ϕ(n) = #{x ∈ Z : 1 ≤ x ≤ n, (x, n) = 1}

For any A ⊂ Z, we use 1A(n) for its indicator function,

1A(n) =

{
1 if n ∈ A
0 otherwise

We use pn for the nth prime number. Furthermore, for us, n will always
be an integer, p will always be prime, and P shall denote the set of prime
numbers.

For summations and products, we shall use the standard practice of speci-
fying the variable over which the operation is taking place under the

∑
or∏

as well as specifying the other conditions the variable needs to satisfy.
Furthermore, sums over p are over primes and sums over n are over positive
integers. This may lead to sums of the form

∑
n≤x

,
∑
p≤x

,
∑
p|m

,
∑
n|m

,
∑

χ mod q

and so on, which are respectively sums over positive integers up to x, primes
up to x, all prime divisors of m, all divisors of m, and all Dirichlet character
modulo q.
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Unless otherwise specified, all Dirichlet characters are modulo q. Further,
for all Dirichlet characters χ, we denote

δ(χ) =

{
1 if χ = χ0

0 otherwise

where χ0 is any principal character. For sums over primitive Dirichlet char-
acters we add an asterisk to the sum like

∑∗

χ mod q

Finally, for any theorem beyond the scope of this report shall be marked with
a (?) to indicate its difficulty. This means that the theorem was assumed as
a black box when preparing this report because its proof is more complex
than we have space for, and detracts rather than adds to the exposition of
the Bombieri-Vinogradov theorem.
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Chapter 1

Introduction

The Bombieri-Vinogradov theorem is a statement about the error term in
Dirichlet’s theorem which is useful in Number Theory. In this chapter, we
will motivate the study of prime numbers, we will give the proper context
in which this theorem lies, and we will introduce the notation and nomen-
clature that will let us state the Bombieri-Vinogradov theorem and explain
its importance. The material in this report has been adapted from [1], with
an intent to clarify the difficult steps in its exposition and make it easier for
a non-expert to understand.

1.1 The Prime Number Theorem for Arithmetic
Progressions

A central question in analytic number theory is that of the distribution of
prime numbers among the positive integers. The “macrostructure” of this
distribution is normally studied by examining the prime-counting function
π(x) given by

π(x) =
∑
p≤x

1

where the summation is over primes less than or equal to x, and trying to
determine its asymptotic behaviour as x → ∞. One of the early achieve-
ments of analytic methods in number theory was the Prime Number Theorem
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(PNT) proved independently by Hadamard and de la Valle-Poussin, which
gives an asymptotic formula for π(x) which says

π(x) ∼ x

log x

Another question of much importance in number theory is the distribution
of prime numbers within arithmetic progressions. Information about this
distribution can be used to prove a plethora of interesting facts about the
prime numbers. Another early result (perhaps the seminal result in analytic
number theory) proven by Dirichlet states that if

π(x; q, a) =
∑
p≤x

p≡a mod q

1

is the number of primes less than x in a given congruence class modulo
q and further suppose that (a, q) = 1 (that is, a is coprime to q), then
π(x; q, a)→∞ as x→∞.

If (a, q) 6= 1, there are obviously only finitely many primes in the congruence
class containing a, since p ≡ a (mod q) implies that any prime which divides
both a and q must divide p. Thus, if (a, q) > 1 then the only primes which
can be in the congruence class are the ones divisible by (a, q). If (a, q) is
composite, then there are zero such primes, and if (a, q) is prime there is
one such prime, and hence the number of primes in this congruence class is
finite. Trivially, thus, any arithmetic progression has infinitely many primes
if and only if the first term and common difference are coprime. This is
known as “Dirichlet’s theorem on primes in arithmetic progressions”.

However, we can do much more than simply show infinitude for (a, q) = 1,
and we are interested in obtaining a numerical estimate similar to PNT for
primes in a particular progresson. There is no natural reason to expect that
the primes would be more concentrated in one particular congruence class
than the others. Thus, we would expect that all such congruence classes
should roughly have the “same” number of primes. Since there are ϕ(q)
many such congruence classes we would expect that for some fixed a and
sufficiently large x, π(x; q, a) should roughly be π(x)/ϕ(q). This turns out
to be true, in what is a quantitative version of Dirichlet’s theorem which
states that
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π(x; q, a) ∼ π(x)

ϕ(q)
∼ 1

ϕ(q)

x

log x

This quantitative version of Dirichlet’s theorem is known as the “Prime
Number Theorem for arithmetic progressions”.

While this is a deep theorem, the asymptotically equality is not sufficient
and we need more information about the error in this theorem. We can
write the above estimate as

π(x; q, a) =
1

ϕ(q)

x

log x
+ o

(
x

log x

)
Where o() is the little-oh asymptotic notation. The goal of many results is
to replace the error term with a more precise big-oh estimate. In particular,
the Siegel-Walfisz theorem gives such an estimate, and shall be used in our
proof of the Bombieri-Vinogradov theorem.

Before moving on to that, however, we shall note that there exists an alter-
native way to state these theorems that is much easier to use and prove.

1.2 Chebyshev’s ϑ and ψ Functions

It turns out that the prime-counting function π(x; q, a) is very difficult to
use in proofs. Instead, it has been typical since Chebyshev to replace them
by the theta and psi functions, ϑ(x; q, a) and ψ(x; q, a).

An alternative way to write π is the following:

π(x; q; a) =
∑
n≤x

n≡a mod q

1P(n)

Where 1A(n) is the indicator function of a set of integers A. Thus, π can be
interpreted as a weighted sum over all elements in a congruence class with
the prime elements weighted with 1 and the composite elements weighted
with 0.
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However, it turns out that this method of weighting is not ideal for proving
results. Instead, a better weight is the von Mangoldt function, which we
shall define presently. We thus consider instead the sum

∑
n≤x

n≡a mod q

Λ(n)

where Λ(n) is the more appropriate weight, the von Mangoldt function.

In this and the subsequent section we will provide a recipe for turning results
about one of the above weighted sums to the other, and try to establish why
the second sum is better suited for manipulation.

One way to motivate this is the following. Clearly, by PNT

π(x) log x

x
= 1 + o(1)

Taking natural logarithms both sides

log π(x)− log x+ log log x = log(1 + o(1)) = o(1)

where the last equality is easily established.1 Now, if x = pn, the nth prime
number, then clearly π(x) = n. Thus we have

log n− log pn + log log pn = o(1)

Noting that log log x = o(log x), we thus get

log n = log pn + o(log pn)

Or, in other words,
log n ∼ log pn

This suggests that if instead of giving all primes the same weight 1, we
weight them by their logarithm, the higher primes would contribute more,

1As the logarithm is continuous at 1, if f(x) = o(1), then limx→∞ f(x) = 0. Thus
limx→∞ log(1+f(x)) = log (1 + limx→∞ f(x)) = log(1) = 0. Hence, clearly, log(1+o(1)) =
o(1).
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multiplying a rough factor of a logarithm. We can formalize this heursitic
by a partial summation2 argument.

Thus, we define a new function, called the Chebyshev ϑ-function in the
literature as follows

ϑ(x) =
∑
p≤x

log p

which weights each prime by their logarithm instead of 1.

As mentioned above, using partial summation, we can establish the following
two identities

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t(log t)2
dt

ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt

Using these, we can convert any estimate on the first function into one of
the second, and vice-versa.

In particular, it is easily shown that

lim
x→∞

1

x

∫ x

2

π(t)

t
dt = lim

x→∞

log x

x

∫ x

2

ϑ(t)

t(log t)2
dt = 0

which shows that PNT is equivalent to ϑ(x) ∼ x. In any case, the first
identity can be used to change any estimate for ϑ to one for π.

Analogous to the prime-counting function for progressions, π(x; q, a), we can
define a ϑ(x; q, a) for progressions as follows

ϑ(x; q, a) =
∑
p≤x

p≡a mod q

log p

The above identities can then be proved in exactly the same way by replacing
π(x) with π(x; q, a) and ϑ(x) with ϑ(x; q, a).

2See Appendix
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In some sense, it is natural to work with logarithms of primes when working
with weighted sums. Primes are essentially multiplicative objects, and the
logarithm allows one to pass from the multiplicative to the additive, and
thus form a natural candidate for dealing with sums over primes. However,
it turns out even weighting all primes by their logarithms and all composites
by 0 does not give the most convenient form. The most convenient form is
given instead by Chebyshev’s ψ-function,

ψ(x) =
∑
pk≤x

log p

where the sum is over all primes p and all positive integers k such that
pk ≤ x. In other words, we weight all prime powers by the logarithm of the
prime of which they are a power, and all other numbers by 0. The hope
then, is that since the prime powers contribute a smaller amount than the
primes, the contribution from them can be controlled.

Clearly,

ψ(x) =

∞∑
k=1

∑
pk≤x

log p =

∞∑
k=1

∑
p≤ k√x

log p =

∞∑
k=1

ϑ(x1/k)

Here note that since for a fixed positive x, limk→∞ x
1/k = 1 thus for suffi-

ciently large k, x1/k < 2, and thus ϑ(x1/k) = 0. Thus, all but finitely many
terms vanish, and in particular, the terms are non-vanishing if and only if
x

1
k ≥ 2. Taking logarithm to the base 2 on both sides, we see this is the

same as requiring k ≤ log2 x.

Thus,

ψ(x) =
∑

k≤log2 x
ϑ(x

1
k )

Now, trivially, ϑ(x) =
∑

p≤x log p ≤
∑

p≤x log x ≤ x log x. Also, we know

that ϑ(x) is increasing and thus, ϑ(x1/2) ≥ ϑ(x1/k) for k ≥ 2. With this we
can see that
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ψ(x)− ϑ(x) =
∑

2≤k≤log2 x
ϑ(x1/k)

≤
∑

2≤k≤log2 x
ϑ(x1/2)

≤ ϑ(x1/2) log2 x

≤ x1/2(log2 x)(log x
1
2 )

= O
(
x1/2(log x)2

)
Thus, any estimate for ψ can be converted into an estimate for ϑ, provided
the estimate has an error larger than O(

√
x) by at least two logarithmic

factors. In particular, since logarithms always grow slower than powers,
for any ε > 0, an error of the form O(x1/2+ε) can be tolerated. This is
much tighter than most bounds we have, and thus in any theorem we shall
prove here, ψ may be interchanged with ϑ and vice-versa. This also means
that the PNT is equivalent to ψ(x) ∼ x. Using the bound ϑ(x) = O(x),
which is substantially weaker than PNT and was proven by Chebyshev using
elementary methods, we can sharpen the estimate to ψ(x)−ϑ(x) = O(

√
x).3

Identically to π and ϑ, we define ψ(x; q, a)

ψ(x; q, a) =
∑
pk≤x

pk≡a mod q

log p

Furthermore, as above

ψ(x; q, a) =
∑

k≤log2 x
ϑ(x1/k; q, a)

and thus,

3Clearly

ψ(x)− ϑ(x) = ϑ(x1/2) +

blog2 xc∑
k=3

ϑ(x1/k) ≤ ϑ(x1/2) + ϑ(x1/3) log2 x = O(x1/2)
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ψ(x; q, a)− ϑ(x; q, a) =
∑

2≤k≤log2 x
ϑ(x

1
k ; q, a)

≤
∑

2≤k≤log2 x
ϑ(x1/k)

= ψ(x)− ϑ(x)

Hence, all comments as above apply to the Chebyshev functions of a partic-
ular progression as well.

1.3 The von Mangoldt Function

We are now in a position to define the von Mangoldt function. This function
is the weight by which the ψ-function had been defined, above. In other
words,

Λ(n) =

{
log p if n = pk for some p ∈ P and k ∈ Z+

0 otherwise

Thus we have

ψ(x; q, a) =
∑
n≤x

n≡a mod q

Λ(n)

The reason Λ(n) is used is because it arises naturally in the Dirichlet series
of the logarithmic derivative of the Riemann Zeta function. The Riemann
Zeta function is defined as

ζ(s) =

∞∑
n=1

1

ns

which is absolutely convergent for R(s) > 1. In this same region, it can be
shown that
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−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns

The following identity is equivalent to the above Dirichlet series equality, and
can be interpreted as an analytic statement of the fundamental theorem of
arithmetic.

Theorem 1.3.1. For any n ∈ N,

log n =
∑
d|n

Λ(d)

Proof. By the fundamental theorem,

n =
∏
pa||n

pa

Hence, taking logarithms both sides

log n =
∑
pa||n

a log p

=
∑
pa||n

∑
k≤a

log p

=
∑
pk|n

log p

=
∑
d|n

Λ(d)

where the last equality follows from the definition.

This theorem gives another example of how Λ(n) can arise naturally in
situations involving divisibility.
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1.4 The Error Term in PNT

Now, as stated earlier, we are interested in the error term in the PNT for
arithemtic progressions. The strongest known result for an individual pair
a and q is the following result by Siegel and Walfisz.

Theorem 1.4.1 (?). Fix a real number A > 0. If (a, q) = 1 and q ≤
(log x)A, we have

ψ(x; q, a) =
x

ϕ(q)
+OA

(
exp(−c1

√
log x)

)
where c1 is some absolute positive constant, and OA() means that the implicit
constant depends on A, but is uniform in a and q.

The above theorem, known in the literature as the Siegel-Walfisz theorem
is quite deep and we will thus omit its proof.

The Generalized Riemann Hypothesis (GRH), which is one of the biggest
unsolved problems in number theory, is a statement about the zeroes of an-
alytic objects associated with every arithmetic progression which are called
L-functions. If GRH holds for every L-function of a given congruence class
(say, a (mod q)), then we can show that

ψ(x; q, a) =
x

ϕ(q)
+O(x1/2(log x)2)

where the error term is uniform for all q. In many applications, the GRH
is important because of these strong bounds it gives us for the PNT in
arithmetic progressions, and it essentially says that the error is O(x1/2),
ignoring logarithmic factors.

Now fix some real number x, and look at

∆(x; q) = max
(a,q)=1

sup
y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣
then ∆(x; q) represents the maximum possible error in the PNT for any
congruence class modulo q for numbers ≤ x. If GRH holds, we would expect
this to be O(x1/2) barring logarithmic factors. Thus, if we sum all these error
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terms until some real positive number Q, we would expect the error to be
O(x1/2Q). That is,

∑
q≤Q

∆(x; q) = O(x1/2Q)

barring logarithms.

GRH, however, is a deep conjecture and notoriously difficult. Number the-
orists assume GRH all the time to prove extremely strong results. However,
the hypothesis itself is still well out of the reach of current methods.

The theorem of Enrico Bombieri and A.I. Vinogradov that we wish to discuss
however establishes something similar in spirit to the above calculations
unconditionally, that is, without using GRH in the proof in any way. With
∆ as defined above, we can now state their theorem.

Theorem 1.4.2 (Bombieri-Vinogradov). For any A > 0

∑
q≤Q

∆(x; q)�A x(log x)−A + x1/2Q(log xQ)4

Barring logarithmic factors, we can see that forQ ≤ x1/2, the error is roughly
what we’d expect. In any case, we have the crude estimate ∆(x; q) �
(x/q + 1) log x. Thus,

∑
q≤Q

∆(x; q)�
∑
q≤Q

(
x log x

q
+ log x

)
� x(log x)(logQ) +Q log x

Hence, we get

∑
q≤Q

∆(x; q)� x(log xQ)2 +Q log x

which is clearly stronger than our theorem for Q > x1/2. Hence, for any
proof we can assume the converse. The goal of the rest of this report is to
prove this theorem while providing the background required for this proof.
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Chapter 2

Dirichlet Characters

Virtually any discussion regarding multiplicative structure in arithmetic pro-
gressions must depend in some way on the concept of Dirichlet characters.
In this chapter, we will introduce Dirichlet characters and associated math-
ematical furniture and prove some theorems about them we will be using in
our exposition.

2.1 Definition

A Dirichlet character χ is an extension of a character of the multiplicative
group (Z/qZ)× into one on the entirety of Z.

Suppose (G, ·) is a finite abelian group. Then a function e : G→ T is called
a character if, for all a, b ∈ G

e(a · b) = e(a)e(b)

or, in other words, e is a group homomorphism from G to T. The character
given by e(a) = 1 for all a ∈ G is called the “trivial character”.

Now, fix an integer q. For any character of (Z/qZ)×, we can create a corre-
sponding Dirichlet character modulo q, χ : Z→ C as follows:

χ(n) =

{
e(n) if n ∈ (Z/qZ)×

0 otherwise
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In other words, χ is supported on the integers coprime to q and is essentially
the same as e at these points. The unique Dirichlet character associated with
the trivial character is called the principal character and is denoted as χ0.
All other characters are known as non-principal characters.

The reader should verify that χ is completely multiplicative (ie, χ(mn) =
χ(m)χ(n) for all integers m and n) and periodic with period q. It can be
shown that, in fact, any completely multiplicative function on N which is
periodic with minimal period q which does not vanish everywhere is actually
a Dirichlet character modulo q.

We can then show the following orthogonality equation, that we will use
throughout implicitly.

Theorem 2.1.1 (Orthogonality of Dirichlet Characters). For any fixed in-
teger q, if χ and χ1 are two Dirichlet characters modulo q, then

∑
a mod q

χ(a)χ1(a) =

{
ϕ(q) if χ = χ1

0 if χ 6= χ1

where the summation is over any complete residue class of integers modulo
q. Furthermore, if χ is some Dirichlet characters modulo q and a and b are
integers coprime to q, then

∑
χ mod q

χ(a)χ(b) =

{
ϕ(q) if a ≡ b (mod q)

0 otherwise

We omit the proofs of the above theorem. The interested reader can find a
proof in any book on analytic number theory, such as say [2] or [3].

2.2 The Twisted ψ Function

We are now in a position the twisted ψ-function, which is essentially Cheby-
shev’s ψ-function, “twisted” by a factor of χ(n) for some Dirichlet character
χ modulo q. That is, we define the summatory function ψ(x;χ) for a Dirich-
let character χ as follows:
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ψ(x;χ) =
∑
n≤x

χ(n)Λ(n)

Now, clearly, like ψ(x) and unlike ψ(x; q, a), this function is a sum over
all integers up to a given quantity and is not restricted at all in terms
of which congruence class the integer lies in. This is thus much easier to
handle in principle. This now shows the application of the orthogonality of
Dirichlet characters - they can be used to “pick out” elements in a particular
congruence class and convert a sum over them into one over all integers. In
particular, a basic sum interchange combined with orthogonality can be used
to easily establish the following identities

ψ(x; q, a) =
1

ϕ(q)

∑
χ mod q

χ(a)ψ(x;χ)

ψ(x;χ) =

q∑
a=1

χ(a)ψ(x; q, a)

Thus information about ψ for all Dirichlet characters modulo q can be con-
verted into information about congrunce classes modulo q, and vice-versa.
In particular, the Siegel-Walfisz theorem admits the following variant.

Theorem 2.2.1. Suppose that A > 0 is a fixed, real number. When q ≤
(log x)A and χ is a Dirichlet character modulo q, we have

ψ(x; q)− δ(χ)x�A x exp(−c1
√

log x)

where c1 is an absolute positive constant.

Proof. We use directly the above mentioned identity, and apply the regular
Siegel-Walfisz theorem. Fixing A > 0 and choosing any q ≤ (log x)A, we
have

ψ(x; q, a) =
x

ϕ(q)
+OA

(
exp(−c1

√
log x)

)
Thus,
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ψ(x;χ) =

q∑
a=1

χ(a)ψ(x; q, a)

=

q∑
a=1

(
χ(a)× x

ϕ(q)
+ χ(a)×OA

(
exp(−c1

√
log x)

))

Note that since each term in the sum
∑q

a=1 χ(a) is bounded by 1, thus, the
sum is � q ≤ (log x)A. To remove the dependency on A over here, note
that since A is fixed, we have in fact that (log x)A � x. Hence, we obtain
that

ψ(x;χ) = x

(∑q
a=1 χ(a)

ϕ(q)

)
+OA

(
x exp(−c1

√
log x)

)
Noting that the main term evaluates to δ(χ)x by the orthogonality of char-
acters, we obtain

ψ(x;χ)− δ(χ)x�A x exp(−c1
√

log x)

for q ≤ (log x)A as required.

This is the form of the Siegel-Walfisz theorem that we shall use in our proof.

2.3 Primitive and Imprimitive Dirichlet Charac-
ters

Fix a positive integer q, and consider some q∗|q, and a Dirichlet character
χ∗ modulo q∗. Consider the function χ defined as follows:

χ(n) =

{
χ∗(n) if (n, q) = 1

0 otherwise

In other words,
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χ(n) = χ0(n)χ∗(n)

where χ0 is the principal character mod q.

It is easily verified that χ is completely multiplicative, not everywhere van-
ishing and periodic with minimal period q, and hence a Dirichlet character.

Thus in some sense, we can “lift” from any Dirichlet character modulo q∗, a
character modulo q. If q and q∗ have the same prime divisors, then clearly
χ(n) = χ∗(n) for all n. In any case, χ and χ∗ are remarkably similar, and
differ only at points which have prime divisors common with q but not q∗.
χ∗ is said to induce χ.

We will now try to characterize the behaviour of primitive characters in
contrast to impritive characters. If χ is a Dirichlet character modulo q,
we say that d is a quasiperiod if m ≡ n (mod d) and (mn, q) = 1 imply
χ(m) = χ(n). We can show that the least quasiperiod of any Dirichlet
character divides it modulus.

Suppose g = (d, q) where d is a quasiperiod of χ. We shall show that g must
also be a quasiperiod of χ.

To see this, note that g|(m− n) and that g is a linear combination of d and
q by elementary properties of the greatest common divisor. Hence, there
exist x, y ∈ Z such that

m− n = dx+ qy

Thus χ(m) = χ(m−qy) = χ(n−dx) = χ(n), and thus g is also a quasiperiod.
Hence, if d is the least quasiperiod of χ, (d, q) ≤ d shall also be a quasiperiod.
However this can only happen if (d, q) = d or if d|q. Thus, the least
quasiperiod of χ must divide q. This least quasiperiod is called the con-
ductor of the Dirichlet character.

We now have the following theorem that connects conductors with the prim-
itivity of a character.

Theorem 2.3.1. Let χ be a Dirichlet character modulo q with conductor d.
Then, there exists a unique primitive Dirichlet character χ? which is modulo
d such that χ is induced by χ?.
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Proof. We will go about this by constructing a Dirichlet character modulo d
from χ which induces χ. The construction will demonstrate the uniqueness
of this character.

The idea behind this proof is to suppose χ is induced by a character χ?

modulo d, and try to determine what values χ? must take.

We first define, naturally, χ?(n) = 0 if (n, d) > 1. Now suppose (n, d) = 1.
Then (n+kd, d) = 1. Furthermore, by the Chinese Remainder Theorem, we
may choose k so that, in fact, (n+kd, q) = 1. Now, if χ were induced by χ?,
χ?(n) must be the same as χ(n + kd). Hence we define χ?(n) = χ(n + kd)
for suitable k and note that due to the fact that d is the conductor of χ, this
definition is independent of k.

It can easily be seen that χ? so defined is periodic and completely multiplica-
tive, with minimal period d, and satisfies χ(n) = χ?(n)χ0(n). Furthermore,
χ? is primitive as the conductor of χ? would be a quasiperiod of χ, and
thus must be ≥ d, giving that it must be d itself. The uniqueness of this
construction can be easily seen as if there is another χ∗ inducing χ, then for
(n, d) > 1, they both vanish, while for (n, d) = 1 we get

χ?(n) = χ?(n+ kd) = χ(n+ kd) = χ∗(n+ kd) = χ∗(n)

where k has been chosen appropriately as above.

We now show a property of primitive characters, which shall be crucial when
we are treating Gauss sums.

Theorem 2.3.2. Suppose χ is a primitive Dirichlet character modulo q.
Then, for d|q, d 6= q and every integer a, we have

q∑
n=1

n≡a mod d

χ(n) = 0

Proof. Since d|q, d 6= q, and χ is primitive, we see that d cannot be a
quasiperiod. Hence, there must exist m and n such that m ≡ n (mod d),
χ(mn) 6= 0 and χ(m) 6= χ(n). Thus, since m must be invertible modulo
q, we can choose some c such that (c, q) = 1 and cm ≡ n (mod q). This c
clearly satisfies c ≡ 1 (mod d) and χ(c) 6= 1.

22



Now note let us write the sum in the theorem as S. Note that as k runs
through a complete set of residues (mod q/d), the numbers n = ac + kcd
and n = a+ kd run through all residues (mod q) for which n ≡ a (mod d).
Thus, we see that

S =

q/d∑
k=1

χ(ac+ kcd) = χ(c)

q/d∑
k=1

χ(a+ kd) = χ(c)S

As χ(c) 6= 1, clearly S = 0.

2.4 Gauss Sums and Character Sums

The Dirichlet characters can be interpreted as an orthogonal basis of the
function space on (Z/qZ)×), with respect to a particular inner product.
However, another possible orthogonal basis can be created from e(a/q) =

e
2πia
q . These are in some sense “additive” characters, where Dirichlet char-

acters are “multiplicative”. It is strikingly clear that the additive characters
are much easier to handle in certain settings than multiplicative characters,
and thus we wish for some medium by which we can easily translate between
the two. This is done primarily by the Gauss sum

τ(χ) =

q∑
a=1

χ(a)e(a/q)

This can be thought of as the above inner product applied on additive and
multiplicative characters, respectively.

We shall need the following theorem about separabilitiy of Gauss sums for
our investigation of character sums

Theorem 2.4.1. If χ is a Dirichlet character modulo q and n is a positive
integer such that either χ is primitive or (n, q) = 1, then

∑
a mod q

χ(a)e(na/q) = χ(n)τ(χ)
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Where the sum is over any complete residue system modulo q. In particular,
when χ is primitive, |τ(χ)| = √q.

Proof. If (n, q) = 1, note that

χ(n)
∑

a mod q

χ(a)e(na/q) =
∑

a mod q

χ(na)e(na/q) = τ(χ)

as na runs through a complete residue class when a does so. Thus, the
theorem follows. For (n, q) > 1, and χ primitive, χ(n) = 0, hence we must
show that the sum vanishes.

Now suppose m and d are the numerator and denominator of n/q in its
reduced form. Then, clearly

q∑
a=1

χ(a)e(an/q) =
d∑

h=1

e(hm/d)

q∑
a=1

a≡h (mod d)

χ(a)

By our previous theorem, the inner sum vanishes when χ is primitive.

To establish |τ(χ)| =
√
q, take the square modulus of the proposition and

sum over 1 ≤ n ≤ q.

Thus, we get

q∑
n=1

∣∣∣∣∣
q∑

a=1

χ(a)e(an/q)

∣∣∣∣∣
2

= |τ(χ)|2
q∑

n=1

|χ(n)|2 = ϕ(q)|τ(χ)|2

The sum on the left can be rewritten by using the fact that |a|2 = aa as

q∑
a=1

q∑
b=1

χ(a)χ(b)

q∑
n=1

e((a− b)n/q)

Clearly the innermost sum is q if a ≡ b (mod q), and 0 otherwise. Thus, the
sum is

q

q∑
a=1

|χ(a)|2 = qϕ(q)
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Thus, we get ϕ(q)|τ(χ)|2 = ϕ(q)q, which establishes the theorem.

One application of the Gauss sums is the following fundamental inequality
about character sums which we will use in our proof. This inequality is called
the Pólya-Vinogradov inequality, where Vinogradov here is I.M. Vinogradov
as opposed to A.I. Vinogradov who is eponymous in this report.

Theorem 2.4.2 (Pólya-Vinogradov Inequality). Let χ be a non-principal
Dirichlet character modulo q. Then for real x ≤ q

∑
x<n≤y

χ(n)� q1/2 log q

where the implicit constant is uniform in x and y.

Proof. Clearly, it is sufficient to prove that

∑
n≤x

χ(n)� q1/2 log q

where the sum is over all positive integers up to x.

We will use the orthogonality of additive characters to get the following

∑
n≤x

χ(n) =
∑
n≤x

q∑
m=1

χ(m)

q

q∑
h=1

e

(
h(m− n)

q

)

We can now interchange sums to get

∑
n≤x

χ(n) =
1

q

q∑
h=1

q∑
m=1

χ(m)e(hm/q)
∑
n≤x

e(−hn/q)

=
1

q

q−1∑
m=1

χ(h)τ(χ)
∑
n≤x

e(−hn/q)

where the last equality follows from our previous theorem about separable
Gauss sums and the orthogonality of Dirichlet characters for h = 1.
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Now we make note of the fact that for h 6= 0, we can explicitly calculate
the inner sum using the geometric series formula to show that the sum
is in fact � ‖h/q‖−1. This is a specific example of the general fact that∑

n e(nα) = O(1/α) for sums over all integers in an interval, and with
α 6= 0. We shall use this fact again later.

Combined with our previous theorem that |τ(χ)| = √q, we now get

∑
n≤x

χ(n)� q−1/2
q−1∑
h=1

‖h/q‖−1

Now we see that the quantity ‖h/q‖ is simply |h/q| for h ≤ q/2, while the
remaining part of the sum can atmost contribute as much as the first part
does. This means that our sum is

� q1/2
∑
h≤q/2

1

h
� q1/2 log q

which proves the theorem for primitive characters.

To prove the imprimitive case, suppose the conductor is r, we consider
the unique primitive character χ? modulo r that induces χ. Then by the
definition of χ(n), we may replace it by χ?(n) whenever (n, q) = 1

∑
n≤x

χ(n) =
∑
n≤x

(n,q)=1

χ?(n) =
∑
n≤x

(n,q/r)=1

χ?(n)

It is difficult to deal with the condition of coprimality in the sum as it stands
right now. A common trick that is used to determine when an integer is
unity comes from the theory of the Moebius function µ, which we will now
use to convert the condition into a sum over a new index. We have the
following identity

∑
m|n

µ(m) =

{
1 if n = 1

0 otherwise

26



which can be derived by noting that both sides are multiplicative (in the
sense of f(mn) = f(m)f(n) for (m,n) = 1), and comparing them on prime
powers.

We can thus replace the condition (n, q/r) = 1 with a sum over µ of divisors
of (n, q/r), which we will hope are easier to handle. Hence,

∑
n≤x

χ(n) =
∑
n≤x

χ?(n)
∑
m|n
m|q/r

µ(m)

Interchanging sums, replacing the parameter n by lm and using the multi-
plicativity of Dirichlet characters, we get

∑
n≤x

χ(n) =
∑
m|q/r

µ(m)χ?(m)
∑
l≤x/m

χ?(l)

We now use the theorem for primitive characters, and the fact that the
modulus of µ(m)χ?(m) can never exceed 1 to get

∑
n≤x

χ(n)� r1/2 log r
∑
m|q/r

1 = d(q/r)r1/2 log r

Noting that d(n) ≤ 2
√
n (since for every divisor less than

√
n there is one

divisor greater than
√
n) and that log r ≤ log q, we get that

∑
n≤x

χ(n)� q1/2 log q

establishing the theorem.
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Chapter 3

Elementary Reductions

In this chapter, we reduce the Bombieri-Vinogradov theorem to what we
call Vaughan’s basic mean value theorem (BMVT).

3.1 The Mean Value Theorem

Theorem 3.1.1 (Vaughan’s BMVT). Let

T (x,Q) =
∑
q≤Q

q

ϕ(q)

∑∗

χ mod q

sup
y≤x
|ψ(y;χ)|

where the sum is over primitive characters modulo q. Then

T (x,Q)�
(
x+ x5/6Q+ x1/2Q2

)
(log xQ)3

We will prove this theorem in the remaining chapters. In this chapter, we
will establish that if the BMVT holds, then so does the Bombieri-Vinogradov
theorem.

3.2 Reducing the Bombieri-Vinogradov Theorem

We start with the following identity for (a, q) = 1.
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ψ(y; q, a) =
1

ϕ(q)

∑
χ mod q

χ(a)ψ(y;χ)

By the definition of δ,

y
∑

χ mod q

δ(χ) = y

Note here that χ0(a) = 1, giving us

y =
∑

χ mod q

χ(a)δ(χ)y

Thus we have

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ ≤ 1

ϕ(q)

∑
χ mod q

|ψ(y;χ)− δ(χ)y|

Note here that the right hand side does not depend on a but depends on y
and the left hand side gives an error in a particular PNT for a particular
AP. Thus to get bounds for

∑
q≤Q ∆(x; q), it suffices to bound

∑
q≤Q

1

ϕ(q)

∑
χ mod q

sup
y≤x
|ψ(y;χ)− δ(χ)y|

as any bound for that would yield the same bound for
∑

q≤Q ∆(x; q). Here
we have already thrown away the cancellation in the sum over characters.

We will now try to bound this sum in a manner using the BMVT. Clearly,
we first need to reduce the problem to some sort of sum of over primitive
characters. Pick an arbitrary character χ mod q. We know that for some
q∗|q, there is some primitive character χ∗ mod q∗ that induces χ. We would
want to believe that ψ(y;χ) and ψ(y;χ∗) must be close. In fact

ψ(y;χ)− ψ(y;χ∗) =
∑
n≤y

(χ(n)− χ∗(n))Λ(n) =
∑
n≤y

(χ0(n)− 1)χ∗(n)Λ(n)
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It is easy to see that the terms in the summation are non-zero only if n is a
prime power (say pk), and further, p|q and p - q∗. For such n, the value of
the summand is log p. Hence, this is

O

 ∑
p|q,p-q∗

(log p)
∑

k≤ log y
log p

1


Thus

ψ(y;χ) = ψ(y;χ∗) +O

(log y)
∑
p|q

1


Where the sum is over all primes p dividing q. Now by the fundamental
theorem of arithmetic,

q =
∏
p|q

pαp(q)

for some αp(q). For those p we are considering, obviously pαp(q), being a
prime power is bigger than the least of the prime powers, viz. 2. Thus,

q ≥
∏
p|q

2 = 2
∑
p|q 1

Taking logarithms, clearly
∑

p|q 1 � log q, giving us that the error term
when replacing χ by χ∗ is � (log q)(log y). Thus, we get

∑
q≤Q

1

ϕ(q)

∑
q∗|q

∑∗

χ∗ mod q∗

(
sup
y≤x
|ψ(y;χ∗)− δ(χ∗)y|+O ((log q)(log y))

)

Now, obviously,

ϕ(q) =
∑

χ mod q

1 =
∑
q∗|q

∑
χ∗ mod q∗

1
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Hence, the error term can be pulled out and seen to be O(Q(log xQ)2), which
on comparison to the bound in Bombieri-Vinogradov is more than tolerable.
Hence, we discard this error term and examine only the main term1.

We now interchange the order of summation, and replace q instead by q∗r
and removing the ∗ from the character variable, getting thus,

∑
q∗≤Q

∑
r≤Q/q∗

1

ϕ(q∗r)

∑∗

χ mod q∗

sup
y≤x
|ψ(y; q)− δ(χ)y|

Now, it can easily be established that

ϕ(q∗r) ≥ ϕ(q∗)ϕ(r)

by simply using the standard formula

ϕ(n) = n
∏
p|n

(
1− 1

p

)

and noting that the right hand side will have an extra factor of
∏
p|(r,q∗)(1−

1/p).

Furthermore, we also have

∑
n≤Q

1

ϕ(n)
� log 2Q

which can be established by noting the identity

1

ϕ(n)
=

1

n

∑
d|n

µ(d)

ϕ(d)

where µ is the Moebius function, and then doing a simple sum interchange.

Thus, if we replace q∗ by q for cleaner dummy variables, we see that our
main term is

1We shall do this routinely, wherein once we show that the error in a particular esti-
mation is drowned by the Bombieri-Vinogradov bound, we shall neglect it and focus on
the remaining main term.
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�
∑
q≤Q

log 2Q

ϕ(q)

∑∗

χ mod q

sup
y≤x
|ψ(y;χ)− δ(χ)y|

At this point, we see that the summands bear some relation to expression in
the variant of Siegel-Walfisz that we have proven. Thus, we could probably
deal with the smaller terms (those ≤ (log x)A for some A) using Siegel-
Walfisz. Indeed, let R = (log x)6+A. Then,

∑
q≤R

log 2Q

ϕ(q)

∑∗

χ mod q

sup
y≤x
|ψ(y;χ)− δ(χ)y| �A (log x)Rx exp(−c2

√
log x)

where we have implicitly used the fact that a sum over primitive characters
of 1 may not exceed ϕ(q), and that Q� x.

This part of the sum thus gives us a contribution that is

� x(log x)−A

which is acceptable. For the remaining part of the sum, clearly q > 1, and
hence a primitive conductor χ modulo q is non-principal. In other words,
δ(χ) = 0. It remains thus, to deal with

(log 2Q)
∑

R<q≤Q

1

ϕ(q)

∑∗

χ mod q

sup
y≤x
|ψ(y;χ)|

It should now be obvious that an appeal to the BMVT, and a suitable
partial summation argument would give us our desired conclusion. In fact,
multiplying the numerator and denominator of the summand by q, and
summing partially, we get

(log 2Q)
∑

R<q≤Q

1

ϕ(q)

∑∗

χ mod q

sup
y≤x
|ψ(y;χ)| =

T (x,Q)− T (x,R)

Q

+

∫ Q

R

T (x, t)− T (x,R)

t2
dt

here we have used the same notation T (x, t) as in the BMVT.
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Clearly, our sum is thus

≤ (log 2Q)Q−1T (x,Q) +

∫ Q

R
t−2T (x, t)dt

Using log 2Q� log x and the BMVT, we see this is

� Q−1
(
x+ x5/6Q+ x1/2Q2

)
(log x)4+

∫ Q

R
t−2
(
x+ x5/6t+ x1/2t2

)
(log x)4dt

�
(
xR−1 + x5/6 log(2Q/R) + x1/2Q

)
(log x)4

� x(log x)−A + x1/2Q(log x)4

as required.

We have thus shown that it is sufficient to prove Vaughan’s BMVT to estab-
lish the Bombieri-Vinogradov theorem. In the remaining part of this report
we will examine the theory behind this inequality, and prove it.
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Chapter 4

The Large Sieve

The Large Sieve is an analytic principle first invented by Linnik in the 1940s
in his work on the least quadratic non-residue modulo a prime p. With time
and exposition, the general principle and the usefulness of Linnik’s large
sieve is much better understood now, and it is a crucial ingredient in the
proof of the BMVT. In this chapter, we shall exposit the basic idea behind
the large sieve, we will establish a particular example of what is called a
“Large Sieve Inequality” and enunciate a stronger inequality from which, by
using Gauss sums, we can extract a general inequality for characters that
will help establish the BMVT.

In general, let an be some sequence, and fix N . Further, let

S(χ) =
M+N∑
n=M+1

anχ(n)

We see that the summand of the BMVT is a term of this kind with an as
the von Mangoldt function. Then a general bound of the form

∑
q≤Q

q

ϕ(q)

∑∗

χ mod q

|S(χ)|2 ≤ λ(N,Q)

M+N∑
n=M+1

|an|2

would roughly mean that if we could control suitable sums of von Mangoldt
functions, we can control the sum in the BMVT. Our goal in this chapter
shall be to prove such a bound.
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4.1 The Analytical Principle of the Large Sieve

For any positive integers N , M and Q, and any sequence of real numbers
(an)∞n=1, suppose

S(α) =
M+N∑
n=M+1

ane(nα)

Then we seek some λ(N,Q) (which can easily be seen to be uniform in M)
such that a bound of the following form can be established

∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 ≤ λ(N,Q)

M+N∑
n=M+1

|an|2

Any inequality of this form is called a “Large Sieve Inequality”, and such
a λ(N,Q) clearly exists by applying Cauchy-Schwarz inequality on the left
hand side. A little observation shows that we can rewrite the inequality in
the following manner:

∑
α∈FQ

|S(α)|2 ≤ λ(N,Q)
M+N∑
n=M+1

|an|2

where FQ is the sequence of Farey fractions1 with denominator at most Q.
This way of writing this equation suggests that such an inequality could be
established for sets with more arbitrary structure than FQ. In particular,
note that S(α) is clearly periodic with period 1. Furthermore, the intuition
is that if too many α cluster around the same point, then those |S(α)|2 could
possibly pick an an to be close enough to that the contribution of that term
becomes very big, and thus cannot be bounded independently of the various
α. Thus, any arbitrary set that we replace FQ with must be equidistributed
in some sense with respect to the metric on T = R/Z, that is

‖α‖ = sup
n∈Z
|α− n|

1See Appendix
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which is the distance of α from its nearest integer.

Thus, we replace the Farey fractions with an arbitrary set of real number Fδ
such that for distinct x, y ∈ Fδ we have ‖x− y‖ ≥ δ. That is, any set which
is equidistributed in ‖ · ‖ with level δ. We then look instead for a λ0(N, δ)
such that

∑
α∈Fδ

|S(α)|2 ≤ λ0(N, δ)
M+N∑
n=M+1

|an|2

It is easily established that the Farey fractions FQ are equidistributed with
level δ = 1/Q2. Thus if any λ0(N, δ) works, we can take λ(N,Q) =
λ0(N,Q

−2). Nowadays, even inequalities of the λ0(N, δ) variety are called
Large Sieve Inequalities. Thus the principle of the large sieve can be ex-
tracted to an analytical principle with only an equidistribution requirement
on the set being considered. It was shown in 1991 that λ0(N, δ) = N−1+δ−1

works and that this is the best possible bound that can be obtained, even
when only considering the Farey fractions. Thus, λ(N,Q) = N − 1 + Q2

works. For the purpose of this proof, we will only use the much easier fact
that λ(N,Q)� N+Q2. In the next section, we shall provide an elementary
proof that λ(N,Q) = N +Q2 log 3Q2 suffices.

4.2 A Large Sieve Inequality

We now establish that

λ0(N, δ) = N +
1

δ
log

3

δ

works, which incidentally also establishes that

λ(N,Q) = N +Q2 log 3Q2

also works.

Before we move on, we establish first the following useful theorem.
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Theorem 4.2.1 (Duality Lemma). Suppose that cnr are complex numbers
for n = 1, · · · , N and r = 1, · · · , R and λ is a real number such that for all
complex numbers zr, we have

N∑
n=1

∣∣∣∣∣
R∑
r=1

cnrzr

∣∣∣∣∣
2

≤ λ
R∑
r=1

|zr|2

then

R∑
r=1

∣∣∣∣∣
N∑
n=1

cnrwn

∣∣∣∣∣
2

≤ λ
N∑
n=1

|wn|2

holds for all complex numbers wn.

Proof. Let LHS be the left hand side of the inequality we wish to establish.
Now, using the fact that |a|2 = aa, and changing a few dummy variables,
we have that

LHS =

N∑
m=1

wm

R∑
r=1

cmr

N∑
n=1

cnrwn

Hence, by Cauchy-Schwarz, if we take zr =
∑N

n=1 cnrwn

LHS2 ≤

(
N∑
m=1

|wm|2
)

N∑
m=1

∣∣∣∣∣
R∑
r=1

cmrzr

∣∣∣∣∣
2

which by the hypothesis does not exceed

N∑
m=1

|wm|2λ
R∑
r=1

|zr|2 = (LHS)λ
N∑
m=1

|wm|2

which establishes the theorem.

The Duality Lemma may be interpreted as a statement from Linear Algebra
about Hermitian matrices, but we shall not use this interpretation in any
significant way.
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We now establish our inequality

Theorem 4.2.2 (A Large Sieve). Suppose that 0 < δ ≤ 1/2, and that F
is a set of real numbers for which x, y ∈ F and x 6= y imply ‖x − y‖ ≥ δ.
Further suppose that (an)∞n=1 and S(α) are as defined above. Then

∑
α∈F
|S(α)|2 ≤ λ0(N, δ)

M+N∑
n=M+1

|an|2

holds with

λ0(N, δ) = N +
1

δ
log

3

δ

Proof. Let F = {x1, x2, · · · , xR}. Then, by the Duality Lemma it suffices
to bound

M+N∑
n=M+1

∣∣∣∣∣
R∑
r=1

bre(nxr)

∣∣∣∣∣
2

=
R∑
r=1

R∑
s=1

brbs

M+N∑
n=M+1

e(n(xr − xs)

The diagonal terms (s = r) and non-diagonal terms (s 6= r) will clearly
be different types of terms due to the cancellation or lack thereof from the
trignometric sums. In particular, the r = s terms contribute N

∑R
r=1 |br|.

For r 6= s, as previously noted, we can show that

M+N∑
n=M+1

e(n(xr − xs)) ≤
1

2‖xr − xs‖

Hence, from the diagonal terms we get at most

R∑
r=1

R∑
s=1
s 6=r

1

2
(|br|2 + |bs|2)

1

2‖xr − xs‖
=

R∑
r=1

|br|2
R∑
s=1
s 6=r

1

2‖xr − xs‖

Now we note that

R∑
s=1
s 6=r

1

2‖xr − xs‖
≤ 2

∑
k≤1/δ

1

2kδ
≤ 1

δ
log

3

δ
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establishing the theorem.

Clearly this theorem also implies the large sieve inequality for Farey fractions
with λ(N,Q) = N +Q2 log 3Q2.

In the rest of this report, we could use this form of the Large Sieve to prove
the Bombieri-Vinogradov theorem with a slightly inflated logarithmic factor,
which is normally adequate for most applications of the theorem. However,
we will use without proof the slightly stronger estimate that, in fact,

λ(N,Q)� N +Q2

works for some appropriate implicit constant.

4.3 A Large Sieve Inequality for Characters

Assuming the stronger inequality of the previous section, we are now in a
position to establish the type of bound we loosely described at the beginning
of this chapter. We wish to go now from an inequality for additive characters
to one for multiplicative characters. This shall be done by going through
the useful tool of the Gauss sums. We have, thus, the following theorem:

Theorem 4.3.1 (Large Sieve for Characters). Suppose that for a Dirichlet
character χ,

S(χ) =

M+N∑
n=M+1

anχ(n)

Then,

∑
q≤Q

q

ϕ(q)

∑∗

χ mod q

|S(χ)|2 ≤ λ(N,Q)
M+N∑
n=M+1

|an|2

holds with λ(N,Q)� N +Q2.
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Proof. Suppose χ is a primitive character. Then, by the separability of
Gauss sums,

χ(n) =
1

τ(χ)

q∑
a=1

χ(a)e(na/q)

Thus, substituting this in S(χ),

S(χ) =
M+N∑
n=M+1

an
τ(χ)

q∑
a=1

χ(a)e(na/q) =
1

τ(χ)

q∑
a=1

χ(a)S(a/q)

by interchanging the sums and appealing to the definition of S(α). Hence,

∑∗

χ mod q

|S(χ)|2 =
1

|τ(χ)|2
∑∗

χ mod q

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

We have |τ(χ)|2 = q, and the sum can be extended over all characters to get

∑∗

χ mod q

|S(χ)|2 ≤ 1

q

∑
χ mod q

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

We shall now show that the left hand side of this ineqality is

ϕ(q)

q

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2

which combined for our large sieve inequality for exponential sums immedi-
ately established the theorem.

To see this, note that

∑
χ mod q

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

=
∑

χ mod q

q∑
a=1

q∑
b=1

χ(a)χ(b)S(a/q)S(b/q)

Interchanging the sums, we have
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q∑
a=1

q∑
b=1

S(a/q)S(b/q)
∑

χ mod q

χ(a)χ(b)

Now, using the orthogonality of Dirichlet characters, we see that the inner
sum is 0 if (a, q) > 1 or a 6= b and ϕ(q) otherwise. Thus, we get the sum

ϕ(q)

q∑
a=1

(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2

which is as we wanted. This is the variant of Parseval’s identity in this
setting, and establishes our theorem.

For our final application, we will actually use the following tweaked inequal-
ity which we can derive from our large sieve inequality for characters.

Theorem 4.3.2 (Tweaked Inequality). Let x ≥ 2, and a1, · · · , aM and
b1, · · · , bN be complex numbers. Then,

∑
q≤Q

q

ϕ(q)

∑∗

χ mod q

∑
y≤x

∣∣∣∣∣∣∣∣
M∑
m=1

N∑
n=1

mn≤y

ambnχ(mn)

∣∣∣∣∣∣∣∣
2

� (log xMN)

√√√√(M +Q2)(N +Q2)

M∑
m=1

|am|2
N∑
n=1

|bn|2

Proof. By the Cauchy-Schwarz inequality and our large sieve for characters,
we have

∑
q≤Q

q

ϕ(q)

∑∗

χ

∣∣∣∣∣
M∑
m=1

N∑
n=1

ambnχ(mn)

∣∣∣∣∣�
√√√√(M +Q2)(N +Q2)

M∑
m=1

|am|2
N∑
n=1

|bn|2

We now insert a maximality condition in this. Let
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C =

∫ ∞
−∞

sinα

α
dα

Let γ > 0 so that we define

ε(β) =

{
1 if 0 ≤ β ≤ γ
0 if β > γ

Now it can be seen that

∫ ∞
−∞

eiβα
sin γα

Cα
dα = ε(β)

Since
∫∞
A

sinλα
α dα� 1/λA,

ε(β) =

∫ −A
A

eiβα
sin γα

Cα
dα+O

(
1

A|γ − β|

)
Putting γ = log(byc+ 1

2) and β = logmn, we get

ε(logmn) =

{
1 if mn ≤ y
0 if mn > y

Thus,

ε(logmn) =

∫ A

−A
(mn)iα

sin γα

Cα
dα+O

( y
A

)
Now, we can put this condition into the sum to get

M∑
m=1

N∑
n=1

mn≤y

ambnχ(mn) =
M∑
m=1

N∑
n=1

anbmχ(mn)ε(logmn)

=

∫ A

−A

M∑
m=1

N∑
n=1

amm
iαbnn

iαχ(mn)
sin(γα)

Cα
dα+O

(
y

A

M∑
m=1

N∑
n=1

|ambn|

)
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The error term here is manageable for A = xMN . Putting that in, and
assuming y ≤ x, the integral is

�
∫ A

−A

∣∣∣∣∣
M∑
m=1

N∑
n=1

amm
iαbnn

iαχ(mn)

∣∣∣∣∣min

(
log x,

1

|α|

)
dα

The part of the integrand independent of α is clearly

�

√√√√(M +Q2)(N +Q2)
M∑
m=1

|am|2
N∑
n=1

|bn|2

while

∫ A

−A
min

(
log x,

1

|α|

)
dα� log xMN

proving the theorem.
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Chapter 5

Estimates on the von
Mangoldt Function

We are now in a position to establish the BMVT. The important idea here
is what we call Vaughan’s Identity which provides us with a way to separate
sums involving the von Mangoldt function into 4 bilinear forms each of which
we will later be able to deal with. The identity itself is a trivial equality of
Dirichlet series, and hence equality of the coefficients of the corresponding
series.

5.1 Vaughan’s Identity

The identity is the following

Theorem 5.1.1 (Vaughan’s Identity). Suppose that u, v are positive reals
and y ≥ 2. Further suppose f is a complex-valued number theoretic function
with finite support (ie, the number of points such that f(n) 6= 0 are finite).
Then,

∑
n

Λ(n)f(n) = S1 − S2 + S3 − S4

where
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S1 =
∑
m≤u

µ(m)
∑

n≤y/m

(log n)f(mn)

S2 =
∑
m≤uv

cm
∑

n≤y/m

f(mn) where cm =
∑

k≤u,l≤v
kl=m

Λ(k)µ(l)

S3 =
∑
m>u

∑
n>v

mn≤y

∑
k|m
k>u

Λ(k)

µ(n)f(mn)

S4 =
∑
n≤v

Λ(n)f(n)

Proof. For any formal Dirichlet series F (s) and G(s), we have the identity

−ζ
′

ζ
(s) = G(s)(−ζ ′(s))−F (s)G(s)ζ(s)−(−ζ ′(s)−F (s)ζ(s))

(
G(s)− 1

ζ(s)

)
+F (s)

Now, we specialize with,

F (s) =
∑
n≤u

Λ(n)

ns

G(s) =
∑
n≤v

µ(n)

ns

Let Λj(n) be the coefficient of n−s in the Dirichlet series of the jth term in
the identity. Then,

Λ(n) = Λ1(n)− Λ2(n) + Λ3(n)− Λ4(n)

Using our knowledge of Dirichlet series, it’s now very easy to see that

Sj =
∑
n

Λj(n)f(n)
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which proves our theorem.

Thus, using this theorem, we can convert sums of the type
∑

n Λ(n)f(n)
into bilinear forms. The expectation is that the contribution from S4 shall
be small, the smoothness of the coefficients of S1 and S2 will give control
over them, while S3 can be hopefully be bounded by some other methods.

5.2 Proof of the BMVT

We now return to our proof of the BMVT using Vaughan’s identity and
our tweaked inequality. In this portion of the exposition, we will follow [1]
almost exactly.

We wish to show that if

T (x,Q) =
∑
q≤Q

q

ϕ(q)

∑∗

χ mod q

sup
y≤x
|ψ(y;χ)

then

T (x,Q)�
(
x+ x5/6Q+ x1/2Q2

)
(log xQ)3

Now suppose Q2 > x. By the tweaked inequality with M = 1, a1 = 1,
N = bxc and bn = Λ(n), we get the bound

Q2(logQ)2
√∑
n≤x

Λ(n)2 � x1/2Q2(log xQ)3

which is acceptable. We can thus suppose that Q2 ≤ x.

Let u = v = min
(
Q2, x1/3, xQ−2

)
. Then using the same idea in the tweaked

inequality, if we restrict the supremum to y ≤ u2,

∑
q≤Q

q

ϕ(q)

∑∗

χ

sup
y≤u2

|ψ(y;χ)| � (u2Q+uQ2)(log x)3 � (x2/3Q+x1/3Q2)(log x)3
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which is again acceptable. Thus, it suffices to consider

∑
q≤Q

q

ϕ(q)

∑∗

χ

sup
u2<y≤x

|ψ(y;χ)|

We can now use Vaughan’s identity with our chosen values for u, v and with

f(n) =

{
χ(n) if n ≤ y
0 otherwise

to separate ψ(y;χ) sum into four bilinear sums Sj(χ), j = 1, 2, 3, 4, whereby
it suffices to bound instead

Tj =
∑
q≤Q

q

ϕ(q)

∑∗

χ

sup
u2<y≤x

|Sj(χ)|

The case j = 4 is easy and can be dealt with by appealing to the tweaked
inequality.

For the case j = 1,

S1(χ) =
∑

m≤u µ(m)χ(m)
∑

n≤y/m χ(n)
∫ n
1
dt
t

=
∫ y
1

∑
m≤min(u,y/t) µ(m)χ(m)

∑
t<n≤y/m χ(n)dtt

�
∫ y
1 uq

1/2 log q dtt

� uq1/2(log q)(log x)

where the inequality holds for q > 1. For q = 1, we get an bound of x(log x)2,
whereby

T1 � (x+ uQ5/2)(log xQ)2 � (x+ x1/2Q2)(log xQ)2

on examining all the possible values of u.

For j = 3, we consider

M = {2kbuc : k = 0, 1, · · · ; 2kbuc ≤ x/u}
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Note that |M| � log x. Now, if

S3(χ;M) =
∑

M<m≤2M

∑
u<n≤x/M
mn≤y

∑
k|m
k>u

Λ(k)

µ(n)χ(mn)

then,

S3(χ)�
∑
M∈M

|S3(χ;M)|

We thus have

T3 �
∑
M∈M

T3(M)

where

T3(M) =
∑
q≤Q

q

ϕ(q)

∑∗

χ

sup
u2<y≤x

|S3(χ;M)|

We now use the tweaked inequality to obtain

T3(M)� (log x)

√
(M +Q2)(x/M +Q2)

∑
m≤2M

(logm)2
∑

n≤x/M

µ(n)2

Using the easy facts that
∑

m≤z(logm)2 � z(log 2z)2 and
∑

m≤z µ(m)2 � z,

T3(M)� (log x)2
(
x+ xM−1/2Q+ x1/2M1/2Q+ x1/2Q2

)
Summing over elements of M will give

T3 � (log x)3
(
x+ xu−1/2Q+ x1/2Q2

)
Thus,
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T3 � (log x)3
(
x+ x5/6Q+ x1/2Q2

)
The final case, j = 2 can be dealt with by separating S2(χ) as follows

S2(χ) = S′2(χ) + S′′2 (χ)

with S′2 with terms having m ≤ u and the S′′2 with terms having u < m ≤ u2.
The corresponding sums T ′2 and T ′′2 can then be dealt with in a manner
similar to T1 and T3 respectively.

This establishes the BMVT, and hence the Bombieri-Vinogradov theorem.
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Appendix A

Appendix

A.1 Partial Summation

We now give an account for partial summation. In general, summation by
parts is an identity similar to integration by parts, which relates the sum of
the product of two functions with the sum of one function, and the difference
of the other. However, for our purposes we shall need the following, much
weaker version called partial summation.

Theorem A.1.1 (Partial Summation). Suppose a1, a2, a3 · · · is a sequence
of complex numbers, A(x) =

∑
n≤x an and f(x) is some differentiable func-

tion on (1,∞). Then

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt

Proof. Suppose x is a natural number. Therefore,

∑
n≤x

anf(n) =
∑
n≤x
{A(n)−A(n− 1)}f(n)

= A(x)f(x)−
∑

n≤x−1
A(n){f(n+ 1)− f(n)}

Now, using the fact that f is differentiable,
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∑
n≤x

anf(n) = A(x)f(x)−
∑

n≤x−1
A(n)

∫ n+1

n
f ′(t)dt

Now, A(x) is a step function changing values at positive integers. Hence
A(n) can be taken inside and replaced by A(t).

∑
n≤x

anf(n) = A(x)f(x)−
∑

n≤x−1

∫ n+1

n
A(t)f ′(t)dt

and thus

∑
n≤x

anf(n) = A(x)f(x)−
∫ ∞
1

A(t)f ′(t)dt

proving our theorem for integers. For non-integers, note that the theorem
holds for bxc, the greatest integer less than x, and that

A(x){f(x)− f(bxc)} −
∫ x

bxc
A(t)f ′(t)dt = 0

which establishes the theorem.

This identity is a powerful tool for obtaining elementary estimates for many
sums that arise in number theory, and is used in this report often without
any specific appeal. We now use it to prove a fact we have assumed as
common knowledge in the report.

Theorem A.1.2. For x > 0,

∑
n≤x

1

x
= log x+O(1)

Proof. Putting an = 1 and f(t) = 1/t in the partial summation identity, we
see that A(x) =

∑
n≤x 1 = bxc and thus,
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∑
n≤x

1

x
=
bxc
x

+

∫ x

1

btc
t2
dt

Now, using bxc = x− {x} = x+O(1),

∑
n≤x

1

x
=
x+O(1)

x
+

∫ x

1

t+O(1)

t2
dt

Thus, the first term is clearly O(1). Furthermore, the error term in the
integral evaluates to

∫ x

1

dt

t2
= 1− 1

x

which contributes O(1). Hence, the main term is

∫ x

1

dt

t
= log x+O(1)

Hence our claim follows.

We now turn to the identities relating π(x) and ϑ(x).

Theorem A.1.3. For any real number x > 0, we have

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t(log t)2
dt

ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt

Furthermore, these relations hold with π(x) replaced by π(x; q, a) and ϑ(x)
replaced by ϑ(x; q, a).

Proof. Putting an = 1P(n) log n and f(t) = 1/ log t, we get A(x) = ϑ(x)
and f ′(t) = −1/t(log t)2 in the partial summation identity. Furthermore,
the left hand side become π(x), giving us the first identity.
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Similarly, putting an = 1P(n) and f(t) = log t, we get A(x) = π(x) and
f ′(t) = 1/t. Furthermore the left hand side becomes ϑ(x), giving us the
second identity.

In either identity if we replace 1P(n) with 1P(a,q)(n) where

P(a, q) = {p ∈ P : p ≡ a (mod q)}

then we obtain the relations between π(x; q, a) and ϑ(x; q, a), analogously.

A.2 Farey Fractions

The Farey fractions are sequences of rational numbers which are recurring
in number theory. For a fixed positive integer Q, the sequence of Farey
fractions, FQ is the set of all rational numbers in [0, 1] whose denominator
in reduced form is ≤ Q, ordered with respect to the natural ordering on the
reals.

Thus, for example, F1 is

0

1
,
1

1

F2 is

0

1
,
1

2
,
1

1

F3 is

0

1
,
1

3
,
1

2
,
2

3
,
1

1

and so on.

There are many interesting facts about the Farey fractions, however we only
need one fact for the report, which is the equidistribution of the fractions
with respect to the norm ‖ · ‖ on T with level 1/Q2.

53



To see this, suppose α, β ∈ FQ are distinct. Without loss of generality,
suppose that α > β. Then,

α =
a

b

β =
c

d

where ad− bc 6= 0. Hence,

|α− β| =
∣∣∣a
b
− c

d

∣∣∣ =
ad− bc
bd

Now note that b, d ≤ Q, and that ad− bc > 0, and thus is ≥ 1. Hence,

|α− β| ≥ 1

Q2

Thus, since

‖α− β‖ = min
n∈Z
|α− β − n|

clearly

‖α− β‖ = |α− β| ≥ 1

Q2

proving that FQ is equidistributed.
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