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1 Introduction

Let Z+ denote the set of natural numbers. Let A ⊂ Z+ be a subset of
positive integers. Further, suppose

[x, y] = {a ∈ Z : x ≤ a ≤ y}

Then the ratio of the size of A ∩ [1, n] with n is roughly a measure of how
“dense” the set is in the positive integers. In particular for every A, define

δ(A) = lim sup
n

|A ∩ [1, n]|
n

to be the “upper asymptotic density” of the set A. Clearly, δ(A) ≥ 0. We
will refer to this as the density of the set for the time being.

Suppose that A is an infinite length arithmetic progression. That is, there
exist a, d ∈ Z+ such that

A = {a+ dx : x ∈ Z+}

It is easy to verify that δ(A) = 1/d > 01.

1To see this, note that we can add finitely many integers to any set without changing
its density. Further, note that if we extend the arithmetic progression to the left until
it either reaches 0, then the augmented set we obtain, A′ will satisfy |A′ ∩ [1, an]| = n,
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The goal of this reading project was to explore the moral converse of this
fact: that is, given that δ(A) > 0, what can we say about the presence of
arithmetic progressions in A? In particular, this density is a rough measure
of how packed the set A is among the integers, or, to take it another way,
how large the set A is. The expectation is that if the set A is too large, then
it should contain at least one arithmetic progression of a given length k.

In 1936, Erdős and Turán formulated this as a precise statement: they
conjectured that if A is a set of positive upper density (ie, δ(A) > 0), then
for any k ∈ Z+, there exists a k-length arithmetic progression in A. Since
removing this progression from A will not change the density of A (as this
is a k-size, and hence finite subset of A), this in fact implies the existence
of infinitely many non-trivial arithmetic progressions of arbitrary length in
A. This statement (known erstwhile as the Erdő-Turán conjecture) was
proven by Endre Szemerédi in 1975, and now goes by the name Szemerédi’s
theorem.

It is easy to see that the cases k = 1 and k = 2 are trivially true given
the hypothesis of positive upper asymptotic density. The first non-trivial
case (k = 3), however, was first established by Klaus Roth through fourier
analytic methods in 1953. In this project I first tried to understand this
proof of Roth’s theorem, with the eventual hope to move on to k = 4, and
then perhaps to the general case. In this report, we will document one proof
of Roth’s theorem, as provided in [3], due to the insight it provides into the
nature of the original proof. During the course of this project, I also referred
to Roth’s original paper [1] as well as an expository note by Alex Iosevich
[2], and presented this version of the proof to my supervisor. I later read
the proof from [3] (an exposition by Neil Lyall), which is what is presented
in this report in a little expanded format. Lyall’s exposition handles the big
picture much better than the other two, in terms of explaining exactly what
is going on. We assume basic familiarity with the discrete Fourier transform
in the report.

since there is exactly one element from A′ in every consecutive sequence of a integers.
Furthermore, it is quite easy to see that choosing [1, N ] with a different N than a multiple
of a will result in the quotient of |A′ ∩ [1, N ]| with N being slightly less than 1/a. Hence,
it is easily seen that

δ(A) = lim sup
N

|A′ ∩ [1, N ]|
N

=
1

a
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1.1 Roth’s theorem

We first state the version of Roth’s theorem that was originally proved.

Theorem 1.1 (Roth’s Original Theorem). Let A ⊂ Z+ be a set such that

δ(A) = lim sup
n

|A ∩ [1, n]|
n

> 0

then A contains at least one arithmetic progression of length 3.

The theorem we shall prove will be the following:

Theorem 1.2 (Roth’s Theorem; finitary). Suppose 1 ≥ δ > 0. Then there
exists a sufficiently large integer N0 such that for all N ≥ N0, if A ⊂
[0, N−1] and |A| = δN , then A necessarily contains a non-trivial arithmetic
progression.

To see that the finitary version of Roth’s theorem implies Roth’s original
version, pick any set A ⊂ Z+ of positive density. Fix a sufficiently small ε
such that δ = δ(A) − ε is still positive. Thus, for sufficiently large N0, a
subset A′ of [0, N0 − 1] of size δN0 shall contain an arithmetic progression.
Now, since the density of A is δ(A), for every N0 and every ε, there exists
an N ≥ N0 such that

|A ∩ [0, N − 1]|
N

≥ δ(A)− ε = δ > 0

Hence, setting A′ = A∩ [0, N − 1], we see that A′ (and hence, A) must have
an arithmetic progression.

1.2 Fourier transform

In this section, we recall some properties of the Fourier transform over ZN =
Z/NZ, the cyclic group of order N . For any function f : ZN → C, we define
its Fourier transform as

f̂(k) =
∑

[x]∈ZN

f(x)e−
2πixk
N =

N−1∑
x=0

f(x)e−
2πixk
N
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where the last equality holds because the summand does not depend on
which representative of [x] ∈ ZN we choose. Then, clearly,

f̂(0) =
∑
x

f(x)

and, by the triangle inequality,

f̂(k) ≤
∑
x

|f(x)|

Now, let

f ∗ g(x) =
∑
y

f(y)g(y − x)

then we know that

ˆf ∗ g(k) = f̂(k)ĝ(k)

Hence we have

|f̂(k)||ĝ(k)| ≤
∑
x

∣∣∣∣∣∑
y

f(y)g(y − x)

∣∣∣∣∣
It is easy to see also, the orthogonality relation

Theorem 1.3 (Orthogonality relation).

1

N

N−1∑
k=0

e
2πi
N
xk =

{
1 x ≡ 0 (mod N)

0 otherwise

Proof. To see this, note that for x ≡ 0 (mod N), the summand is 1, hence
the sum will totally be |ZN | = N . For any other case, we see that it is the
sum of a geometric progression, and hence equal to

(e
2πi
N
xk)N − 1

e
2πi
N
xk − 1
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Clearly, the numerator is 0.

With this, we can prove Plancherel’s identity in this setting,

Theorem 1.4 (Plancherel’s identity). For any function f : ZN → C,

∑
x

|f(x)|2 =
1

N

∑
k

|f̂(k)|2

Proof. Note that |f̂(k)|2 = f̂(k)f̂(k). Substituting the definition of f̂(k)

|f̂(k)|2 =

(∑
y

f(y)e−
2πiyk
N

)(∑
z

f(z)e
2πizk
N

)

Hence,

|f̂(k)|2 =
∑
y,z

f(y)f(z)e
2πi(z−y)k

N

Thus, summing it over all k,

∑
k

|f̂(k)|2 =
∑
k

∑
y,z

f(y)f(z)e
2πi(z−y)k

N

We now interchange the sums, since all sums are finite to get

∑
k

|f̂(k)|2 =
∑
y,z

f(y)f(z)

(∑
k

e
2πi(z−y)k

N

)

By the orthogonality relation, the inner sum will vanish except when z ≡ y
(mod N), which in our domain is the same as asking y = z. In this case,
the inner sum will be N .

Hence,

1

N

∑
k

|f̂(k)|2 =
∑
y

f(y)f(y) =
∑
x

|f(x)|2
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With this we can now begin our proof of Roth’s theorem.

2 Outline: Randomness and Structure

Problems such as Roth’s theorem are often considered in a relatively modern
field called additive combinatorics, which asks questions like these about
sets having some sort of additive structure. A general theme that occurs
in problems from this field is of the dichotomy between “structure” and
“randomness”. In each problem, the solution lies in identifying what a
suitable notion of “randomness” is for the problem at hand. Then, the
problem is divided into two cases - one where the set we are considering
is random in the above sense, and the other where it is more structured.
Different methods are used to solve both cases, and then a hybrid method is
used to solve the general case which is neither too random nor too structured.

First note the concept of “being in arithmetic progression” is invariant under
affine transformations. That is, let A be a set of integers and for x, y ∈ Z+,
let

x+ y ·A = {x+ ya : a ∈ A}

Then A is clearly an arithmetic progression if and only x + y · A is an
arithmetic progression. In particular, rather than considering subsets of
[0, N − 1], we can consider any subset of an arbitrary progression P of
length N . If P has the property that A ⊂ P , |A| = δ|P | = δN implies that
A has an arithmetic progression, then [0, N − 1] has the same property (by
using the affine transformation t 7→ a+ dt, where a and d are the first term
and common difference of P ).

We can now given an overview of how the randomness-structure ideology
will work out in this case. We will define a notion of randomness (which we
call ε-randomness), such that if A is “random”, we will immediately have
many arithmetic progressions of length 3. If A is not “random”, we will
show that there exists a substructure of [0, N − 1] (that is, a subprogression
of [0, N − 1] such that A is concentrated higher on that subprogression that
in the larger progression. In other words, for some ε0 > 0 depending only
on δ, we will show that there exists a progression P ⊂ [0, N − 1] such that
A has density at least δ + ε0 on P . That is,
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|A ∩ P | ≥ (δ + ε0)|P |

We then replace A by A1 and replace [0, N − 1] with [0, N1 − 1], where
[0, N1 − 1] is the progression obtained by applying an affine transformation
to P with the goal of making the first term of the progression 0, and A1 is
the corresponding set obtained by applying the same affine transformation
on A ∩ P . We then examine A1 in the above sense of “randomness”. If it
isn’t random, we do the same thing to obtain an A2 and N2, and a new
progression P2 and keep iterating this until we get

|Ak ∩ Pk| ≥ (δ +M(k)ε0)|Pk| ≥ |Pk|

That is, the density of Ak on Pk exceeds 1. This is clearly absurd, and hence
we must conclude the theorem. To be sure that this argument works, we
will explicitly need to show that for the k for which δ + M(k)ε0 exceeds 1,
the progression Pk is not empty.

2.1 Progressions in Z and ZN

One of the advantages of considering only 3-progressions is that there is a
simple algebraic formula defining them. We know that x, y, z are in arith-
metic progression if and only if

x+ y = 2z

Thus, instead of explicitly searching for 3-progressions in A, we can restrict
ourselves to finding solutions to the equation x+ y − 2z = 0. This solution
will have at least |A| = δN solutions given by x = y = z. These are the
trivial APs.

The notion of arithmetic progression is not particular to the ring Z and can
easily be generalized to ZN as well. We say that a set of integers x, y, z is a
ZN -progression if

x+ y ≡ 2z (mod N)
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Using the orthogonality relation, we have very nice way through which we
can count the ZN -progressions in any set A. Replacing x by x+ y − 2z, we
see that

N−1∑
k=0

e
2πik
N

(x+y−2z) =

{
N x+ y ≡ 2z (mod N)

0 otherwise

Thus,

1

N

∑
x,y,z∈A

N−1∑
k=0

e
2πik
N

(x+y−2z) = #{(x, y, z) ∈ A3 : x+ y ≡ 2z (mod N)}

We let N0 denote the number of solutions in A to the given congruence.
Then, rearranging the sums and separating out the parts that depend on x,
y and z respectively,

N0 =
N−1∑
k=0

(∑
x∈A

e−
2πi
N
x

)∑
y∈A

e−
2πi
N
y

(∑
z∈A

e−
2πi
N

(−2z)

)

Now, if 1A(x) is the indicator function of A, that is

1A(x) =

{
1 x ∈ A
0 otherwise

Then, using the definition of Fourier transform, it is easily obtained that

N0 =
1

N

N−1∑
k=0

1̂A(k)21̂A(−2k)

This idea of using the orthogonality relation to count progressions is central
to the entire proof.

Now, we know that 1̂A(0) =
∑

x 1A(x) = |A| = δN . Hence, separating the
k = 0 term from the sum, we see that
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N0 =
1̂A(0)3

N
+

1

N

N−1∑
k=1

1̂A(k)21̂A(−2k)

That is,

N0 = δ3N2 +
1

N

N−1∑
k=1

1̂A(k)21̂A(−2k)

The leading term here helps us in formulating a suitable notion of random-
ness. If the set A truly were random, then suppose we choose x, z ∈ A.
There are clearly |A|2 = δ2N2 of doing this. If A is “truly random”, the
probability that x − 2z ∈ A is should be |A|/N = δ. Meaning that there
should, roughly speaking, be δ3N2 many solutions to the congruence.

In other words, the k = 0 term contributes what we would expect in the
random case. Thus, if we bound the other sum in a particular manner, we
can come up with a suitable notion of randomness. We thus, define the
notion as follows:

We say the set A is ε-uniform or ε-random if, for all k = 1, 2, · · · , N − 1,

|1̂A(k)| ≤ εN

Now note that

∣∣∣∣∣
N−1∑
k=1

1̂A(k)21̂A(−2k)

∣∣∣∣∣ ≤ max
k 6=0
|1̂A(−2k)|

N−1∑
k=0

|1̂A(k)|2

Here we use Plancherel’s identity, and assume that A is random,

∣∣∣∣∣
N−1∑
k=1

1̂A(k)21̂A(−2k)

∣∣∣∣∣ ≤ εN2
N−1∑
x=0

|1A(x)|2 = εδN3

Replacing this in our earlier counting identity,

N0 ≥ δ3N2 − εδN2
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Thus, the definition we have made measures in some sense how close A
is to being random. If ε is sufficiently small, we have that A is suffi-
ciently random, and can use the identity to prove the existence of non-
trivial ZN -progressions. We will later adapt this argument to count regular
Z-progressions instead.

2.2 Main Theorem

We will now state the main theorem of [3] and then show how this theorem
implies the finitary version of Roth’s theorem.
Theorem 2.1 (Iteration). Let A ⊂ [0, N − 1], δ > 0, with A = δN , and
N ≥ 8δ−2. Then, either A contains a non-trivial 3-AP, or there exists a

Z-progression P with length ≥ δ2
√
N

256 , such that

|A ∩ P | ≥
(
δ +

δ2

64

)
|P |

We will prove this theorem in the rest of the report. For now, note that this
is the exact estimate that was roughly outlined earlier in the randomness-
structure discussion. With this, we can establish Roth’s theorem.

Suppose that under the hypothesis of the theorem, we have not yet chosen an
N , but we have some A ⊂ [0, N − 1] containing no non-trivial progressions.
By the Iteration theorem, we have some progression (say P1). We now apply
an affine transformation on it to get the progression [0, N1−1]. Furthermore,
we identify A1 as the set A ∩ P1 under this same affine transformation.
We then know by our earlier theorems, and by the Iteration theorem, that

|A1| = δ1N1 with N1 ≥ δ2
√
N

256 and δ1 ≥ (δ + δ2

64). Now, since A has not
non-trivial 3-APs, neither does A1. Thus, we can iterate the argument to
obtain Pk, Ak, δk and Nk. At k = 64/δ, we will have density

δk ≥ δ +
kδ2

64
= 2δ

By the same argument, after another 64/2δ steps, the density will double
again, to 4δ. After another 64/4δ steps to 8δ, and so on. Hence, after

64

δ
(1 +

1

2
+ · · ·+ 1

2l−1
) ≤ 128

δ
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steps we have density 2lδ. Hence, by the 128/δ-th step, the density will have
far exceeded 1.

Now, we can easily see by induction that Nk ≥ δ4N1/2k

2562
(both the base case

and the induction are trivial). Thus, we need to ensure that δ4N1/2k

2562
≥ 1 for

k = 128/δ for the argument to work as stated. Clearly, this can be done by
choosing N large enough in the beginning.

Hence, if we establish the Iteration theorem, Roth’s theorem follows.

3 Proof of the Theorem

In this section, we move onto proving the main theorem of the previous
section. We must first deal with a way to detect genuine progressions rather
than detecting progressions modulo an integer. Let N denote the number
of true 3-APs in the set A. Now note that if x, z ∈ A∩ [N/3, 2N/3) (ie, the
middle third of A), then

N > 2z − x ≥ 0

and hence y ∈ A ∩ [0, N − 1]. Thus, in this particular case, we actually
detect genuine progressions rather than ZN -progressions. Let M = A ∩
[N/3, 2N/3). Then, we can change N0 to N if we change the subscripts to
M in two cases, and replace the equality sign by a greater than sign (since
not all genuine progressions may be of the form above). Thus, we get

N ≥ 1

N

N−1∑
k=0

1̂M (k)1̂A(k)1̂M (−2k)

Again, separating out the k = 0 term, we will get a contribution of |M | from
the first and third term, and a contribution of δN from in between. Thus,

N ≥= δ|M |2 +
1

N

N−1∑
k=1

1̂M (k)1̂A(k)1̂M (−2k)

We now bound away the sum under the assumption of ε-randomness for
some ε. We get
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N−1∑
k=1

∣∣∣1̂M (k)1̂A(k)1̂M (−2k)
∣∣∣ ≤ max

k 6=0
|1A(k)|

N−1∑
k=0

|1̂M (k)1̂M (−2k)|

Applying Cauchy-Schwarz and the randomness hypothesis,

N−1∑
k=1

∣∣∣1̂M (k)1̂A(k)1̂M (−2k)
∣∣∣ ≤ εN∑

k

|1̂M (k)|2 = εN2
∑
x

1M (x) = εN2|M |

where we have use Plancherel’s identity.

We also assume thatM ≥ δN
4 . Now if the set is random enough (in particular

if the set is ε-uniform for some ε < δ2/8, we see that

N ≥ δ|M |2

2
≥ δ3N2

32

The above discussions yield that A being ε-random for ε < δ2/8, along with
|M | ≥ δN

4 yields the existence of many progressions (which easily exceed

the trivial APs). Hence, if |M | < δN
4 , we know that one of the first and last

third of [0, N) must contain at least 3δN/8 terms of A, otherwise A cannot
have δN elements. Hence, if we take P to be this set, we note that P is
progression such that |P | ≥ N/3 such that

|A ∩ P | = 3δN

8
=

9δ

8

N/3

=

(
δ +

δ

8

)
|P |

Hence, on P , A has increased density by at least δ/8.

We have thus established the following theorem, by taking contrapositives
to the above, which is proposition 1 of [3]
Theorem 3.1 (Base Iteration). Let A ⊂ [0, N − 1] with |A| = δN . If A
contains no non-trivial AP, then either

1. N ≤ 8δ−2.

2. There exists a progression P , |P | ≥ N/3 such that |A ∩ P | ≥ (δ +
δ/8)|P |.

3. A is not ε-random for ε ≤ δ2/8.
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Clearly the first point can be avoided by choosing N large enough. We will
now examine the third case - that is, we will examine the case where are set
is not random enough. In this non-random case, we shall be able to prove
that the largeness of the non-zero Fourier coefficients 1̂A(k) can be used to
conclude that there is a large progression on which the set A is strongly
concentrated.

3.1 Non-random Sets

We follow [3] and consider the non-random sets case by proving a sequence
of theorems that add up to give the main theorem stated and used above.

The first step is to consider what we call non-overlapping ZN -progressions:
we say such a progression is non-overlapping if its common difference d and
length L satisfy dL < N . We know that if we do this, then at most one
multiple of N can occur between the smallest and largest term in the non-
overlapping ZN -AP. We can thus separate this into two genuine APs: one
before this multiple of N and one after this multiple of N .

We now show that if A is not ε-uniform, it must be heavily concentrated on
a large non-overlapping ZN -progression. In particular, if A is not uniform,
then at least one of its Fourier coefficients must be “large” in the sense of
comparable to N in size. We have the following theorem
Theorem 3.2. If, for some r 6= 0, |1̂A(r) ≥ εN , then there exists a non-
overlapping ZN -progression B′, |B′| ≥

√
N/4, such that

|A ∩B′| ≥
(
δ +

ε

4

)
|B′|

Proof. Before we move on, we note that we know that no matter what
happens, one Fourier coefficient of A, the one for k = 0 is always δN , and
hence quite large. We also know that displacing the function by a constant
quantity does not change the higher Fourier coefficients by the orthogonality
relation. Hence, if we want to concentrate on the large Fourier coefficient,
we try to construct a function which has a small 0 coefficient (in fact, we
just make it 0), by displacing the indicator function by a well-chose constant
quantity. In particular, let

fA(x) = 1A(x)− δ =

{
1− δ x ∈ A
−δ otherwise

14



It is easy to see that f̂A(0) = 0 and that f̂A(k) = 1̂A(k) for all k 6= 0.

Now, write B = B′ + x, for some x. Then |B| = |B′| and,

|A ∩B′| − δ|B| =
∑
y

(1A∩B′(y)− 1B(y))

Now, we know that 1A∩B′(y) = 1A(y)1′B(y). Also, y ∈ B′ if and only if
y − x ∈ B, by definition. Hence,

|A ∩B′| − δ|B| =
∑
y

(1A(y)1B(y − x)− 1B(y − x)) =
∑
y

fA(y)1B(y − x)

Hence, the condition that

|A ∩B′| ≥ (δ + ε/4)|B′|

is the same as

∑
y

fA(y)1B(y − x) = |A ∩B′| − δ|B| ≥ ε|B|
4

Now we established earlier that

|f̂(k)||ĝ(k)| ≤
∑
x

∣∣∣∣∣∑
y

f(y)g(y − x)

∣∣∣∣∣
for function f and g. Thus, if the same Fourier coefficient of two functions
are large, then at least one of the translates of the functions must have a
large inner product with the other function. We can use this fact to establish
the above theorem - the non-randomness implies that one Fourier coefficient
(at r 6= 0) of fA is already large. We try to construct a B such that the
same Fourier coefficient of 1B is also large.

First, we construct such a B of length at least
√
N/4. In particular, for

r 6= 0, we have that we construct such a non-overlapping progression such
that

15



|1̂B(r)| ≥ |B|
2

To see this, partition the square [0, N − 1]2 into less than d
√
N − 1e2 equal

squares. Then by considering the points

{(0, 0), (1, r), · · · (N − 1, (N − 1)r)}

we get that there must exist integers l, k such that l(1, r) and k(1, r) are in
the same square, and hence

(k − l) ≤
√
N

and

r(k − l) ≤
√
N

We let d = k − l, and consider the progression {· · · ,−2d, d, 0, d, 2d, · · · }
equally on both sides around 0 until the size of the progression reaches
|B| = b

√
N/πc. We then have

∣∣∣1̂B(r)− |B|
∣∣∣ ≤ ∣∣∣∣∣∑

x

1B(x)
(
e−

2πixr
N − 1

)∣∣∣∣∣
Now, by definition of B, we can write x = dl with |l| ≤ |B|/2, and hence

∣∣∣1̂B(r)− |B|
∣∣∣ ≤

∣∣∣∣∣∣
∑

|l|≤|B|/2

1B(x)
(
e−

2πidlr
N − 1

)∣∣∣∣∣∣ < 1

2
|B|

(
2π|B|

√
N

2N

)
≤ |B|

2

Hence, we have 1̂B(r) ≥ |B|/2.

Now, let

G(x) =
∑
y

fA(y)1B(y − x)
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Thus,

|Ĝ(r)| = |f̂A(r)||1̂B(r)| ≥ εN |B|/2

Thus using facts about the Fourier transform shown earlier,

∑
x

|G(x)| ≥ |Ĝ(r) ≥ εN |B|/2

Now this of course does not imply that any of the G(x) is large and positive,
it only implies that they are large in magnitude. However, we know the∑

xG(x) = 0. Thus, we can use that fact to get that

∑
x

|G(x)|+G(x) ≥ εN |B|/2

Since the sum is non-negative, at least for some x we must have

|G(x)|+G(x) ≥ ε|B|/2

as otherwise the inequality above would not be satisfied. Now, this implies
that the given G(x) is positive (or else the left hand side would be 0). Hence
we get

G(x) ≥ ε|B|
4

which is what we needed to show.

We now show how to go from non-overlapping ZN -progressions to genuine
Z progressions.
Theorem 3.3. If, for some r 6= 0, |1̂A(r) ≥ εN , then there exists a Z-
progression P , |P | ≥ ε

√
N/32, such that

|A ∩ P | ≥
(
δ +

ε

8

)
|P |
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Proof. We note that the non-overlapping B′ from the previous theorem is the
union of two genuine progressions P1 and P2, |P1| ≤ |P2|. If |P1| ≤ ε|B|/8,
then

|A ∩ P2| = |A ∩B′| − |A ∩ P1| ≥ |A ∩B′| − |P1|

Thus,

|A ∩ P2| ≥ (δ + ε/4)|B| − ε|B|/8 = (δ + ε/8)|B| ≥ (δ + ε/8)|P2|

If not, then both P1 and P2 are of length at least ε|B|/8, and hence A must
have density δ + ε/4 on at least one of them (as otherwise, A cannot have
that density on their union - |A ∩ B′| = |A ∩ P1| + |A ∩ P2| is less than
expected.

Hence we have the theorem.

Now, by the earlier theorem, we consider the case where A is not ε-random
for any ε ≤ δ2/8. In particular, we can replace ε in the previous result with
δ2/8. This establishes the following theorem:
Theorem 3.4 (Iteration). Let A ⊂ [0, N − 1], δ > 0, with A = δN , and
N ≥ 8δ−2. Then, either A contains a non-trivial 3-AP, or there exists a

Z-progression P with length ≥ δ2
√
N

256 , such that

|A ∩ P | ≥
(
δ +

δ2

64

)
|P |

Proof. We note by our Base Iteration, if we choose N ≥ 8δ−2, then either we
have the second case or the third. In the second case, the same progression
P obtained in that theorem suffices - it is in fact, much longer and denser
than the progression required. In the third case, we know that A is not
δ2/8-uniform. Hence, by the just proved theorem, there is a progression
satisfying exactly the conclusion of this theorem (as we obtain by replacing
ε by δ2/8. Hence, the theorem is established.
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This theorem with the discussion in the previous section establishes Roth’s
theorem.
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