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Abstract

The Goldbach conjecture is one of the oldest problems in Number Theory,
specifically in additive number theory. This project is a reading project on
the Vinogradov theorem, proved by I. M. Vinogradov in 1937, which is the
one of the best partial results towards settling the odd Goldbach conjecture.
We briefly survey some basic tools in the field of analytic number theory, and
then present an exposition of a proof of the theorem under the assumption
of the Generalized Riemann Hypothesis. We following [1] and [2] in our
approach.

This report was submitted as part of the course MTH598A (MS Thesis) in
the 2015-16/1st Semester towards the completion of the degree requirements
for the BS-MS dual degree programme.



Notation

We shall describe here the notation that we will need from analytic number
theory.

We shall use the Landau notation

f(x) = O(g(x))

equivalently with f � g and g � fto mean that there exists some posi-
tive constant C such that |f(x)| ≤ Cg(x) for sufficiently large x. Such an
estimate is called a “big-oh estimate”.

We use

f(x) = o(g(x))

to mean that f(x)/g(x)→ 0 as x→∞. Such an estimate is called a “little-
oh estimate”, and being o(g(x)) is strictly stronger than being O(g(x)).
However, little-oh estimates are qualitative statements, and not very good
for calculation. Hence, in practice, one always use more precise big-oh esti-
mates for calculation (ie, with a smaller g(x)) and only return to the little-oh
estimate in the last step to give a neater but strictly weaker estimate in the
end, if at all. (See for example, the Prime Number Theorem).

We will often write

f(x) = g(x) +O(h(x)) or f(x) = g(x) + o(h(x))

to mean that there exists a function p(x) which is respectively = O(h(x))
or = o(h(x)) such that f(x) = g(x) + p(x).
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Finally we use

f(x) ∼ g(x)

interchangeably with

f(x) = g(x) + o(g(x))

to denote the asymptotic equality f(x)/g(x)→ 1 as x→∞.

We use (a, b) to denote the greatest common divisor of a and b and ϕ(n) for
Euler’s totient function,

ϕ(n) = #{x ∈ Z : 1 ≤ x ≤ n, (x, n) = 1}

For any A ⊂ Z, we use 1A(n) for its indicator function,

1A(n) =

{
1 if n ∈ A
0 otherwise

We use pn for the nth prime number. Furthermore, for us, n will always
be an integer, p will always be prime, and P shall denote the set of prime
numbers.

We will use the convention e(x) = e2πix.

For summations and products, we shall use the standard practice of speci-
fying the variable over which the operation is taking place under the

∑
or∏

as well as specifying the other conditions the variable needs to satisfy.
Furthermore, sums over p are over primes and sums over n are over positive
integers. This may lead to sums of the form

∑
n≤x

,
∑
p≤x

,
∑
p|m

,
∑
n|m

,
∑

χ mod q

and so on, which are respectively sums over positive integers up to x, primes
up to x, all prime divisors of m, all divisors of m, and all Dirichlet character
modulo q.
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Unless otherwise specified, all Dirichlet characters are modulo q.

A ? will be used to denote any theorem which has not been proved in this
report.
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Chapter 1

Introduction

The Goldbach conjecture, first introduced by Christian Goldbach in a se-
quence of letters to Leonhard Euler, has two versions, the even/strong/binary
conjecture and the odd/weak/ternary conjecture. These are as follows:

Conjecture 1.1 (Binary Goldbach Conjecture). Every even integer n > 2
can be written as a sum of two primes. That is, there exist p1, p2 ∈ P such
that

n = p1 + p2

Conjecture 1.2 (Ternary Goldbach Conjecture). Every odd integer n > 5
can be written as a sum of three primes. That is, there exist p1, p2, p3 ∈ P
such that

n = p1 + p2 + p3

The binary conjecture is clearly stronger than the ternary conjecture since
if n is an odd number greater than 5, then n− 3 is an even number greater
than 2, and is hence expressible as the sum of two primes p1 + p2. Thus,

n = 3 + p1 + p2

is a representation of n as the sum of three primes.

The closest theorem that we have to the binary conjecture is known as
Chen’s theorem, which is the following:
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Theorem 1.1 (Chen’s Theorem, ?). Any even integer n > 2 can be written
as

n = p+ P

where p ∈ P is prime, and P = p1 or P = p1p2 where p1, p2 ∈ P (in other
words P is a product of at most two primes).

The barrier between establishing Chen’s theorem and the even conjecture is
a relatively well-known issue in Sieve Theory known as the Parity problem
(see [3] for details). This is also the barrier that makes the odd conjecture
considerably easier than the even conjecture.

In the 1920s, Hardy and Littlewood proved an asymptotic version of the
odd Goldbach conjecture under the assumption of the Generalized Riemann
Hypothesis (GRH) using the novel Hardy-Littlewood Circle Method. Ex-
tending their ideas, in 1937, Vinogradov proved his celebrated theorem by
establishing this asymptotic result unconditionally, without relying on the
unproved GRH. In essence, the theorem states that the odd Goldbach con-
jecture is true for sufficiently large numbers. In other words,

Theorem 1.2 (Vinogradov’s theorem). There exist an integer N such that
for all odd n > N , n is a sum of three primes. That is, there exist p1, p2, p3 ∈
P such that

n = p1 + p2 + p3

Since Vinogradov’s work, there has been many subsequent improvements
towards the odd Goldbach conjecture. In 1956, K. Borozdin proved that N
can be chosen to be 33

15. Finally in 2013, Harald Helfgott [4] settled the
conjecture in its entirety.

In this report, we shall establish Vinogradov’s theorem under the assumption
of GRH.

We shall devote the rest of this chapter to introducing key concepts from
analytic number theory that we shall use in our proof.
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1.1 The Prime Number Theorem for Arithmetic
Progressions

A central question in analytic number theory is that of the distribution of
prime numbers among the positive integers. The “macrostructure” of this
distribution is normally studied by examining the prime-counting function
π(x) given by

π(x) =
∑
p≤x

1

where the summation is over primes less than or equal to x, and trying to
determine its asymptotic behaviour as x → ∞. One of the early achieve-
ments of analytic methods in number theory was the Prime Number Theorem
(PNT) proved independently by Hadamard and de la Valle-Poussin, which
gives an asymptotic formula for π(x) which says

π(x) ∼ x

log x

Another question of much importance in number theory is the distribution
of prime numbers within arithmetic progressions. Information about this
distribution can be used to prove a plethora of interesting facts about the
prime numbers. Another early result (perhaps the seminal result in analytic
number theory) proven by Dirichlet states that if

π(x; q, a) =
∑
p≤x

p≡a mod q

1

is the number of primes less than x in a given congruence class modulo
q and further suppose that (a, q) = 1 (that is, a is coprime to q), then
π(x; q, a)→∞ as x→∞.

If (a, q) 6= 1, there are obviously only finitely many primes in the congruence
class containing a, since p ≡ a (mod q) implies that any prime which divides
both a and q must divide p. Thus, if (a, q) > 1 then the only primes which
can be in the congruence class are the ones divisible by (a, q). If (a, q) is
composite, then there are zero such primes, and if (a, q) is prime there is
one such prime, and hence the number of primes in this congruence class is
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finite. Trivially, thus, any arithmetic progression has infinitely many primes
if and only if the first term and common difference are coprime. This is
known as “Dirichlet’s theorem on primes in arithmetic progressions”.

However, we can do much more than simply show infinitude for (a, q) = 1,
and we are interested in obtaining a numerical estimate similar to PNT for
primes in a particular progresson. There is no natural reason to expect that
the primes would be more concentrated in one particular congruence class
than the others. Thus, we would expect that all such congruence classes
should roughly have the “same” number of primes. Since there are ϕ(q)
many such congruence classes we would expect that for some fixed a and
sufficiently large x, π(x; q, a) should roughly be π(x)/ϕ(q). This turns out
to be true, in what is a quantitative version of Dirichlet’s theorem which
states that

π(x; q, a) ∼ π(x)

ϕ(q)
∼ 1

ϕ(q)

x

log x

This quantitative version of Dirichlet’s theorem is known as the “Prime
Number Theorem for arithmetic progressions”.

While this is a deep theorem, the asymptotically equality is not sufficient
and we need more information about the error in this theorem. We can
write the above estimate as

π(x; q, a) =
1

ϕ(q)

x

log x
+ o

(
x

log x

)
Where o() is the little-oh asymptotic notation. The goal of many results is
to replace the error term with a more precise big-oh estimate. In particular,
the Generalized Riemann Hypothesis provides an improved estimate (this is,
in fact, one of the major reasons why GRH is such an important conjecture).

We shall now elaborate on an alternative way to state these theorems that
is much more natural to use and prove.

1.2 Chebyshev’s ϑ and ψ Functions

It turns out that the prime-counting function π(x; q, a) is very difficult to
use in proofs. Instead, it has been typical since Chebyshev to replace them
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by the theta and psi functions, ϑ(x; q, a) and ψ(x; q, a).

An alternative way to write π is the following:

π(x; q; a) =
∑
n≤x

n≡a mod q

1P(n)

Where 1A(n) is the indicator function of a set of integers A. Thus, π can be
interpreted as a weighted sum over all elements in a congruence class with
the prime elements weighted with 1 and the composite elements weighted
with 0.

However, it turns out that this method of weighting is not ideal for proving
results. Instead, a better weight is the von Mangoldt function, which we
shall define presently. We thus consider instead the sum

∑
n≤x

n≡a mod q

Λ(n)

where Λ(n) is the more appropriate weight, the von Mangoldt function.

In this and the subsequent section we will provide a recipe for turning results
about one of the above weighted sums to the other, and try to establish why
the second sum is better suited for manipulation.

One way to motivate this is the following. Clearly, by PNT

π(x) log x

x
= 1 + o(1)

Taking natural logarithms both sides

log π(x)− log x+ log log x = log(1 + o(1)) = o(1)

where the last equality is easily established.1 Now, if x = pn, the nth prime
number, then clearly π(x) = n. Thus we have

1As the logarithm is continuous at 1, if f(x) = o(1), then limx→∞ f(x) = 0. Thus
limx→∞ log(1+f(x)) = log (1 + limx→∞ f(x)) = log(1) = 0. Hence, clearly, log(1+o(1)) =
o(1).
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log n− log pn + log log pn = o(1)

Noting that log log x = o(log x), we thus get

log n = log pn + o(log pn)

Or, in other words,
log n ∼ log pn

This suggests that if instead of giving all primes the same weight 1, we
weight them by their logarithm, the higher primes would contribute more,
multiplying a rough factor of a logarithm. We can formalize this heursitic
by a partial summation2 argument.

Thus, we define a new function, called the Chebyshev ϑ-function in the
literature as follows

ϑ(x) =
∑
p≤x

log p

which weights each prime by their logarithm instead of 1.

As mentioned above, using partial summation, we can establish the following
two identities

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t(log t)2
dt

ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt

Using these, we can convert any estimate on the first function into one of
the second, and vice-versa.

In particular, it is easily shown that

lim
x→∞

1

x

∫ x

2

π(t)

t
dt = lim

x→∞

log x

x

∫ x

2

ϑ(t)

t(log t)2
dt = 0

2See Appendix
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which shows that PNT is equivalent to ϑ(x) ∼ x. In any case, the first
identity can be used to change any estimate for ϑ to one for π.

Analogous to the prime-counting function for progressions, π(x; q, a), we can
define a ϑ(x; q, a) for progressions as follows

ϑ(x; q, a) =
∑
p≤x

p≡a mod q

log p

The above identities can then be proved in exactly the same way by replacing
π(x) with π(x; q, a) and ϑ(x) with ϑ(x; q, a).

In some sense, it is natural to work with logarithms of primes when working
with weighted sums. Primes are essentially multiplicative objects, and the
logarithm allows one to pass from the multiplicative to the additive, and
thus form a natural candidate for dealing with sums over primes. However,
it turns out even weighting all primes by their logarithms and all composites
by 0 does not give the most convenient form. The most convenient form is
given instead by Chebyshev’s ψ-function,

ψ(x) =
∑
pk≤x

log p

where the sum is over all primes p and all positive integers k such that
pk ≤ x. In other words, we weight all prime powers by the logarithm of the
prime of which they are a power, and all other numbers by 0. The hope
then, is that since the prime powers contribute a smaller amount than the
primes, the contribution from them can be controlled.

Clearly,

ψ(x) =
∞∑
k=1

∑
pk≤x

log p =
∞∑
k=1

∑
p≤ k√x

log p =
∞∑
k=1

ϑ(x1/k)

Here note that since for a fixed positive x, limk→∞ x
1/k = 1 thus for suffi-

ciently large k, x1/k < 2, and thus ϑ(x1/k) = 0. Thus, all but finitely many
terms vanish, and in particular, the terms are non-vanishing if and only if
x

1
k ≥ 2. Taking logarithm to the base 2 on both sides, we see this is the

same as requiring k ≤ log2 x.
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Thus,

ψ(x) =
∑

k≤log2 x
ϑ(x

1
k )

Now, trivially, ϑ(x) =
∑

p≤x log p ≤
∑

p≤x log x ≤ x log x. Also, we know

that ϑ(x) is increasing and thus, ϑ(x1/2) ≥ ϑ(x1/k) for k ≥ 2. With this we
can see that

ψ(x)− ϑ(x) =
∑

2≤k≤log2 x
ϑ(x1/k)

≤
∑

2≤k≤log2 x
ϑ(x1/2)

≤ ϑ(x1/2) log2 x

≤ x1/2(log2 x)(log x
1
2 )

= O
(
x1/2(log x)2

)
Thus, any estimate for ψ can be converted into an estimate for ϑ, provided
the estimate has an error larger than O(

√
x) by at least two logarithmic

factors. In particular, since logarithms always grow slower than powers,
for any ε > 0, an error of the form O(x1/2+ε) can be tolerated. This is
much tighter than most bounds we have, and thus in any theorem we shall
prove here, ψ may be interchanged with ϑ and vice-versa. This also means
that the PNT is equivalent to ψ(x) ∼ x. Using the bound ϑ(x) = O(x),
which is substantially weaker than PNT and was proven by Chebyshev using
elementary methods, we can sharpen the estimate to ψ(x)−ϑ(x) = O(

√
x).3

Identically to π and ϑ, we define ψ(x; q, a)

ψ(x; q, a) =
∑
pk≤x

pk≡a mod q

log p

3Clearly

ψ(x)− ϑ(x) = ϑ(x1/2) +

blog2 xc∑
k=3

ϑ(x1/k) ≤ ϑ(x1/2) + ϑ(x1/3) log2 x = O(x1/2)
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Furthermore, as above

ψ(x; q, a) =
∑

k≤log2 x
ϑ(x1/k; q, a)

and thus,

ψ(x; q, a)− ϑ(x; q, a) =
∑

2≤k≤log2 x
ϑ(x

1
k ; q, a)

≤
∑

2≤k≤log2 x
ϑ(x1/k)

= ψ(x)− ϑ(x)

Hence, all comments as above apply to the Chebyshev functions of a partic-
ular progression as well.

1.3 The von Mangoldt Function

We are now in a position to define the von Mangoldt function. This function
is the weight by which the ψ-function had been defined, above. In other
words,

Λ(n) =

{
log p if n = pk for some p ∈ P and k ∈ Z+

0 otherwise

Thus we have

ψ(x; q, a) =
∑
n≤x

n≡a mod q

Λ(n)

The reason Λ(n) is used is because it arises naturally in the Dirichlet series
of the logarithmic derivative of the Riemann Zeta function. The Riemann
Zeta function is defined as
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ζ(s) =
∞∑
n=1

1

ns

which is absolutely convergent for R(s) > 1. In this same region, it can be
shown that

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns

The following identity is equivalent to the above Dirichlet series equality, and
can be interpreted as an analytic statement of the fundamental theorem of
arithmetic.

Theorem 1.3. For any n ∈ N,

log n =
∑
d|n

Λ(d)

Proof. By the fundamental theorem,

n =
∏
pa||n

pa

Hence, taking logarithms both sides

log n =
∑
pa||n

a log p

=
∑
pa||n

∑
k≤a

log p

=
∑
pk|n

log p

=
∑
d|n

Λ(d)

where the last equality follows from the definition.
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This theorem gives another example of how Λ(n) can arise naturally in
situations involving divisibility.
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Chapter 2

Dirichlet Characters and
Ramanujan Sums

Virtually any discussion regarding multiplicative structure in arithmetic pro-
gressions must depend in some way on the concept of Dirichlet characters.
In this chapter, we will introduce Dirichlet characters and associated math-
ematical furniture and prove some theorems about them we will be using in
our exposition.

2.1 Definition

A Dirichlet character χ is an extension of a character of the multiplicative
group (Z/qZ)× into one on the entirety of Z.

Suppose (G, ·) is a finite abelian group. Then a function e : G→ T is called
a character if, for all a, b ∈ G

e(a · b) = e(a)e(b)

or, in other words, e is a group homomorphism from G to T. The character
given by e(a) = 1 for all a ∈ G is called the “trivial character”.

Now, fix an integer q. For any character of (Z/qZ)×, we can create a corre-
sponding Dirichlet character modulo q, χ : Z→ C as follows:
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χ(n) =

{
e(n) if n ∈ (Z/qZ)×

0 otherwise

In other words, χ is supported on the integers coprime to q and is essentially
the same as e at these points. The unique Dirichlet character associated with
the trivial character is called the principal character and is denoted as χ0.
All other characters are known as non-principal characters.

The reader should verify that χ is completely multiplicative (ie, χ(mn) =
χ(m)χ(n) for all integers m and n) and periodic with period q. It can be
shown that, in fact, any completely multiplicative function on N which is
periodic with minimal period q which does not vanish everywhere is actually
a Dirichlet character modulo q.

We can then show the following orthogonality equation, that we will use
throughout implicitly.

Theorem 2.1 (Orthogonality of Dirichlet Characters, ?). For any fixed
integer q, if χ and χ1 are two Dirichlet characters modulo q, then

∑
a mod q

χ(a)χ1(a) =

{
ϕ(q) if χ = χ1

0 if χ 6= χ1

where the summation is over any complete residue class of integers modulo
q. Furthermore, if χ is some Dirichlet characters modulo q and a and b are
integers coprime to q, then

∑
χ mod q

χ(a)χ(b) =

{
ϕ(q) if a ≡ b (mod q)

0 otherwise

We omit the proofs of the above theorem. The interested reader can find a
proof in any book on analytic number theory, such as say [?] or [?].

2.2 The Twisted ψ Function

We are now in a position the twisted ψ-function, which is essentially Cheby-
shev’s ψ-function, “twisted” by a factor of χ(n) for some Dirichlet character
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χ modulo q. That is, we define the summatory function ψ(x;χ) for a Dirich-
let character χ as follows:

ψ(x;χ) =
∑
n≤x

χ(n)Λ(n)

Now, clearly, like ψ(x) and unlike ψ(x; q, a), this function is a sum over
all integers up to a given quantity and is not restricted at all in terms
of which congruence class the integer lies in. This is thus much easier to
handle in principle. This now shows the application of the orthogonality of
Dirichlet characters - they can be used to “pick out” elements in a particular
congruence class and convert a sum over them into one over all integers. In
particular, a basic sum interchange combined with orthogonality can be used
to easily establish the following identities

ψ(x; q, a) =
1

ϕ(q)

∑
χ mod q

χ(a)ψ(x;χ)

ψ(x;χ) =

q∑
a=1

χ(a)ψ(x; q, a)

Thus information about ψ for all Dirichlet characters modulo q can be con-
verted into information about congrunce classes modulo q, and vice-versa.

2.3 The Generalized Riemann Hypothesis and Er-
ror Terms

We are now in a position to pin-point exactly how the Generalized Riemann
Hypothesis enters into the proof. GRH is a statement about the nature
of the non-trivial zeroes of the L-functions associated with the Dirichlet
characters. In particular, for a Dirichlet character χ, we define L(s, χ) for
R(s) > 1 as follows:

L(s, χ) =
∞∑
n=1

χ(n)

ns
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This function can then be analytically continued onto the entire complex
plane, with potentially at most one pole (this occurs when χ is the principal
character). The GRH states that any zero of L(s, χ) with R(s) ≥ 0 must in
fact satisfy 0 < R(s) < 1.

It can be shown that there is an intimate connection between the the twisted
ψ function, and the zeroes of the L-function. In particular, one can show
the following theorem.

Theorem 2.2. (Corrollary of GRH, ?) Under the Generalized Riemann
Hypothesis, if χ is a non-principal character, then

∑
n≤x

χ(n)Λ(n)� x1/2 log2 x

Relatedly the GRH for principal characters (or in fact, the regular Riemann
Hypothesis for the ζ function given by ζ(s) = L(s, 1)) gives the following
result.

Theorem 2.3. (Corrollary of RH, ?) Under the Riemann Hypothesis, if χ
is a principal character, then

∑
n≤x

χ(n)Λ(n) =
∑
n≤x

Λ(n) +O(log2 qx)

= x+O(x1/2 log2 qx)

Combining the two, and using the orthogonality of Dirichlet characters, it
easily follows that for x ≥ q,

ψ(x; q, a) =
x

ϕ(q)
+O(x1/2 log2 x)

This shall be the input of GRH/RH in our proof.

2.4 Gauss Sums

The Dirichlet characters can be interpreted as an orthogonal basis of the
function space on (Z/qZ)×), with respect to a particular inner product.
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However, another possible orthogonal basis can be created from e(a/q) =

e
2πia
q . These are in some sense “additive” characters, where Dirichlet char-

acters are “multiplicative”. It is strikingly clear that the additive characters
are much easier to handle in certain settings than multiplicative characters,
and thus we wish for some medium by which we can easily translate between
the two. This is done primarily by the Gauss sum

τ(χ) =

q∑
a=1

χ(a)e(a/q)

This can be thought of as the above inner product applied on additive and
multiplicative characters, respectively.

We will need the following lemmata regarding Gauss sums.
Lemma 2.1 (?). Let χ be a Dirichlet character modulo q. Then,

|τ(χ)|2 ≤ √q

Lemma 2.2. Let χ0 be the principal Dirichlet character modulo q. Then,

τ(χ0) = µ(q)

where µ(q) is the Moebius function.

Proof. We have the identity that

∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise

which can easily be shown by noting the multiplicativity of both sides and
then evaluating on prime powers.

Thus,
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τ(χ0) =
∑

n∈Z/qZ

χ0(n)e

(
n

q

)

=
∑
n∈Z/qZ
(n,q)=1

e

(
n

q

)

=
∑

n∈Z/qZ

∑
d|(n,q)

µ(d)e

(
n

q

)

Letting n = dm, we get

τ(χ0) =
∑
d|q

µ(d)

q/d∑
m=1

e

(
md

q

)

Now, note that the inner sum is a sum over all the roots of unity modulo
q/d, and is hence zero unless d = q. Hence we get that

τ(χ0) = µ(d)

2.5 Ramanujan Sums

The Ramanujan sums, cq(n) are defined as follows

cq(n) =
∑
a∈Z/qZ
(a,q)=1

e

(
an

q

)

Let ∗ be the Dirichlet convolution defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b)

21



It is an important exercise to show that the set of all C-valued functions
over N forms a ring with with this operation and pointwise addition. In
particular, the unity is

δ(n) =

{
1 if n = 1

0 otherwise

Thus, clearly, the earlier identity about the Moebius function devolves to

1 ∗ µ = δ

Convolving cq(n) under the q variable with 1 we get that

=

1(q) ∗ cq(n) =
∑
d|q

c q
d
(n)

=
∑
d|q

∑
a∈Z/qZ

(a,q/d)=1

e

(
adn

q

)

Replacing a by ad

1(q) ∗ cq(n) =
∑
d|q

∑
a∈Z/qZ
(a,q)=d

e

(
an

q

)

=
∑

a∈Z/qZ

e

(
an

q

)

=

{
q if q|n
0 otherwise

= q1q|n(q)

Convolving both sides by µ, and using 1 ∗ µ = δ,
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cq(n) =
∑
d|q

d1d|nµ
(q
d

)
Thus we get

cq(n) =
∑
d|(q,n)

dµ
(q
d

)

It is now easy to see that cq(n) is multiplicative in q. Further, we can
evaluate it at prime powers as follows (assuming pα||n, that is, it is the
highest power of p to divide n)

cpβ (n) =

α∑
i=0

piµ(pβ−i) =


pβ − pβ−1 if β ≤ α
−pα if β = α+ 1

0 otherwise

We now move on to the actual statement of Vinogradov’s theorem.
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Chapter 3

Vinogradov’s Theorem

With the background we have established, we can now state Vinogradov’s
actual theorem. The essential idea is to consider a function R(N) as follows

R(N) =
∑

p1+p2+p3=N

1

where the sum runs over all triplets of primes that sum to N .

If we can show that R(N) is bounded away from 0 for large enough N , then
we have established Vinogradov’s theorem. However, as with the prime-
counting function, the function R(N) is intractable. Instead, we replace it
with the function r(N) given by

r(N) =
∑

n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3)

In fact, the theorem we shall prove is the following

Theorem 3.1 (Vinogradov’s Theorem). Let A > 0 be any large enough real
number. Then,

r(N) =
N2

2
G(N) +OA

(
N2

logAN

)
where

24



G(N) =
∏
p|N

(
1− 1

(p− 1)2

)∏
p-N

(
1 +

1

(p− 1)3

)

Now note that if N is even, then one of n1, n2, n3 must be even (and in fact,
a power of 2, as the sum is supported on prime powers). Thus,

r(N) =
∑

2k+n2+n3=N

Λ(2k)Λ(n2)Λ(n3)

≤ log3N
∑

2k+n2+n3=N

1

≤ log3N
∑
2k≤N

∑
n2+n3=N−2k

1

≤ N log3N
∑
2k≤N

1

= O(N log4N)

Which is a much strong bound than we obtain from Vinogradov’s theorem
(note that G(N) = 0 if 2|N , hence Vinogradov’s theorem reduces to the
error term bound). Thus, Vinogradov’s theorem is only a useful result for
N odd.

We will now show how the statement of Vinogradov’s theorem given above
leads to the asymptotic form of the odd Goldbach conjecture.

3.1 Establishing the Asymptotic Goldbach

Essentially, we will show that the sum

r′(N) =
∑

p1+p2+p3=N

log p1 log p2 log p3

diverges to infinity as N →∞, thus establishing that the sum is non-zero for
large enough N . In particular, this means that the condition p1+p2+p3 = N
shall be satisfied for some triplet of primes for large enough N .
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To see this, first note that for N odd,

∏
p 6=2

(
1− 1

(p− 1)2

)
≤ G(N) ≤

∏
p

(
1 +

1

(p− 1)3

)

Thus, in particular, r(N)� N2.

Further note that

r(N)− r′(N) =

∗∑
n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3)

where the ∗ denotes that at least one of n1, n2, n3 is not prime. It is easy to
see due to symmetry that

r(N)− r′(N) ≤ 3
∑

pk+n2+n3=N
k≥2

Λ(pk)Λ(n2)Λ(n3)

≤ 3 log2N
∑

pk+n2+n3=N
k≥2

Λ(pk)

≤ 3 log2N
∑
pk≤N
k≥2

log p
∑

n2+n3=N−pk
1

≤ 3N log2N
∑
pk≤N
k≥2

log p

= 3N log2N
∑
k≥2

ϑ(N1/k)

≤ 3N log2N
∑

2≤k≤log2N
ϑ(N1/k)

= O(N3/2 log4N)

where we have used the bound on ϑ that we derived in the first chapter.

Thus,

r′(N) = r(N) +O(N3/2 log4N � N2
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establishing what we wish.

3.2 Setting up the Proof: The Hardy-Littlewood
Circle Method

We shall now set up the proof via the Hardy-Littlewood Circle Method. To
do this, we shall define an auxillary function as follows

f(α) =
∑
n≤N

Λ(n)e(nα)

Here there is a dependence on the parameter N that we have suppressed in
the notation. Note that α ∈ R/Z is uniquely determined upto difference by
integers. We have the following theorem,

Theorem 3.2. With f as given above, we have that

r(N) =

∫ 1

0
f(α)3e(−Nα)dα =

∫
R/Z

f(α)3e(−Nα)dα

Proof. Let

r(k,N) =
∑

n1+n2+n3=k
n1,n2,n3≤N

Λ(n1)Λ(n2)Λ(n3)

It is easy to see that

r(k,N) =

{
r(k) k ≤ N
0 k →∞

Now,
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f(α)3 = f(α)× f(α)× f(α)

=
∑

n1,n2,n3≤N
Λ(n1)Λ(n2)Λ(n3)e ((n1 + n2 + n3)α)

=
∑
k

e(kα)

 ∑
n1+n2+n3=k
n1,n2,n3≤N

Λ(n1)Λ(n2)Λ(n3)


=

∑
k

r(k,N)e(kα)

Now note that the final sum is a finite Fourier series. Hence we can use the
inversion formula to get that

r(N) = r(N,N) =

∫ 1

0
f(α)3e(−Nα)dα

Thus,

r(N) =

∫
R/Z

f(α)3e(−Nα)dα

The crux of the circle method is to realize that the major contribution to the
integral comes from points that are ”close” to rational numbers in a certain
sense. More explicitly, let P and Q be two integers (to be fixed later). Let
FP be the sequence of Farey fractions of denominator ≤ P . For a/q ∈ FP
(such that a and q are co-prime), define

M(a/q) = M(a, q) =

{
α ∈ R/Z :

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qQ

}
We now define

M = ∪a/q∈FpM(a, q)

and
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m = (R/Z)\M

as respectively the ”Major Arcs” and the ”Minor Arcs”. The major arcs
will give the main term, along with some error, while the minor arcs will
contribute wholly to the error term.
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Chapter 4

Major Arcs and Minor Arcs

In this chapter, we will finish the proof of Vinogradov’s theorem by doing
the necessary calculations for the major arcs and the minor arcs.

We proceed by proving a sequence of lemmata.

Lemma 4.1. Let a/q ∈ P. Then, assuming GRH,

∑
n≤x

Λ(n)e(na/q) =
µ(q)

ϕ(q)
x+O(

√
qx log2 x)

Proof. We have

∑
n≤x

Λ(n)e(na/q) =
∑
n≤x

(n,q)=1

Λ(n)e(na/q) +O(log2 x)

Now, with (an, q) = 1, and using the orthogonality of Dirichlet characters,
we have that

e(an/q) =
1

ϕ(q)

∑
b∈Z/qZ

∑
χ (mod q)

χ(b)χ(an)e(b/q) =
1

ϕ(q)

∑
χ (mod q)

χ(an)τ(χ)

Thus we get that
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∑
n≤x

Λ(n)e(na/q) =
1

ϕ(q)

∑
χ (mod q)

χ(a)τ(χ)ψ(x, χ) +O(log2 x)

Now, applying the bound on psi from GRH for non-trivial χ, and the bound
on τ obtained in the second chapter, we get that the non-trivial characters
contribute � √qx log2 x.

By the bound from RH from the second chapter, we get that the trivial
character contributes

1

ϕ(q)
τ(χ0)(x+O(

√
x logx) =

µ(q)

ϕ(q)
(x+O(

√
x log2 x)

which completes the proof of the lemma.

Lemma 4.2. Let a/q ∈ P, α = a/q + β. Then, assuming GRH,

f(α) =
µ(q)

ϕ(q)

∫ N

0
e(βx)dx+O

(
(1 + |β|N)

√
qN log2N

)
Proof. Note that,

f(α) =

∫ N

0
e(xβ)d

∑
n≤x

Λ(n)e(an/q)


This can be shown easily by integrating by parts. Now, by using the previous
lemma with E(x, a/q) as the error term,

f(α) =

∫ N

0
e(xβ)d

(
µ(q)

ϕ(q)
x+ E(x, a/q)

)
The first term here gives the main term of the lemma. Applying integration
by parts on the second term, we get

E(N, a/q)e(Nβ)−
∫ N

0
2πiβe(xβ)E(x, a/q)dx
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Using E(x, a/q) = O(
√

(qx) log2 x) and computing the integral, we get the
error term from the lemma.

This establishes the lemma.

Lemma 4.3. Let a/q ∈ P. α ∈ M(a, q), q ≤ Q and Q = N2/3. Then,
assuming GRH,

f(α)� N

ϕ(q)
+N

5
6
+ε

Proof. We apply the previous lemma, by noting that β = 1
qQ , and taking

the maximum possible value for the integral to get

f(α)� N

ϕ(q)
+

(
1 +

N

qQ

)√
qN log2N � N

ϕ(q)
+

(√
(QN) +

N3/2

Q

)
log2N

It is now easy to see that Q = N2/3 is optimal, giving the desired lemma.

We now set P = log10N

4.1 Minor Arc Contribution

We can now calculate the minor arc contribution as follows.

Theorem 4.1. For some A > 0,

∫
m
|f(α)|3dα� N2

logAN

Proof. We have that q > log10N , and hence ϕ(q) ≥ log9N . Thus, by the
previous lemma, on the minor arcs we have that

f(α)� N

log9N
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Hence,

∫
m
|f(α)|3dα� N

log9N

∫ 1

0
|f(α)|2dα

Now,

∫ 1

0
|f(α)|2dα =

∫ 1

0

∑
n1,n2≤N

Λ(n1)Λ(n2)e ((n1 − n2)α) dα =
∑
n≤N

Λ(n)2 � N log2N

This establishes our theorem

4.2 Major Arc Contribution

We now calculate the major arc contribution as follows.

Theorem 4.2. For all large enough A > 0,

∫
M
f(α)3e(−Nα)dα =

N2

2

∞∑
q=1

µ(q)3

ϕ(q)3
cq(N) +O

(
N2

logAN

)

Proof. We have that

∫
M
f(α)3e(−Nα)dα =

∑
q≤P

∑
1≤a≤q
(a,q)=1

∫ 1/(qQ)

−1/(qQ)
f(a/q + β)3e(−N(a/q + β))dβ

Applying lemma 4.2,

f(a/q + β)3 = µ(q)3

ϕ(q)3

(∫ N
0 e(βx)dx

)3
+O

(
1

ϕ(q)2
min

(
N2,

1

|β|2

)
(1 + |β|N |)

√
qN log2(qN)

)
+O

(
(1 + |β|N)3(qN)

3
2 log2(qN)

)
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We can see with a little calulation that the error term is within the bound
prescribed by the theorem.

Therefore, the main term of the major arc contribution is

∑
q≤P

µ(q)3

φ(q)3

 ∑
1≤a≤q
(a,q)=1

e(−Na/q)

(∫ 1/(qQ)

−1/(qQ)

(∫ N

0
e(βx)dx

)3

e(−Nβ)dβ

)

Now, making the substitution x = Ny and Nβ = ξ in the integrals, we can
evaluate the integral to be

N2

∫ N/(qQ)

−N/(qQ)

(∫ 1

0
e(yξ)dy

)3

e(−ξ)dξ = N2

(∫ ∞
−∞

(∫ 1

0
e(yξ)dy

)3

e(−ξ)dξ +O
(

(qQ)2

N2

))

This gives

N2

2
+O((qQ)2)

Discarding the error term as it is acceptable, we get the main term

N2

2

∑
q≤P

µ(q)3

φ(q)3

 ∑
1≤a≤q
(a,q)=1

e(−Na/q)


The inner sum is the Ramanujan sum cq(N) ≤ ϕ(q), thus extending the
outer sum to infinity will induce an error of at most N2

∑
q>P µ(q)2/ϕ(q)2 �

N2(logN)−10 which is acceptable. This establishes our theorem.

Now note that the sum is multiplicative, and hence we can write down its
Euler product. Using the fact that µ(pk) = 0 for k > 2, and the values of
cpβ (n) that we calculated in chapter 2, we get that the sum is in fact equal
to G(N).

This establishes Vinogradov’s theorem under the Generalized Riemann Hy-
pothesis.
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Appendix A

Appendix

A.1 Partial Summation

We now give an account for partial summation. In general, summation by
parts is an identity similar to integration by parts, which relates the sum of
the product of two functions with the sum of one function, and the difference
of the other. However, for our purposes we shall need the following, much
weaker version called partial summation.

Theorem A.1 (Partial Summation). Suppose a1, a2, a3 · · · is a sequence of
complex numbers, A(x) =

∑
n≤x an and f(x) is some differentiable function

on (1,∞). Then

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt

Proof. Suppose x is a natural number. Therefore,

∑
n≤x

anf(n) =
∑
n≤x
{A(n)−A(n− 1)}f(n)

= A(x)f(x)−
∑

n≤x−1
A(n){f(n+ 1)− f(n)}

Now, using the fact that f is differentiable,
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∑
n≤x

anf(n) = A(x)f(x)−
∑

n≤x−1
A(n)

∫ n+1

n
f ′(t)dt

Now, A(x) is a step function changing values at positive integers. Hence
A(n) can be taken inside and replaced by A(t).

∑
n≤x

anf(n) = A(x)f(x)−
∑

n≤x−1

∫ n+1

n
A(t)f ′(t)dt

and thus

∑
n≤x

anf(n) = A(x)f(x)−
∫ ∞
1

A(t)f ′(t)dt

proving our theorem for integers. For non-integers, note that the theorem
holds for bxc, the greatest integer less than x, and that

A(x){f(x)− f(bxc)} −
∫ x

bxc
A(t)f ′(t)dt = 0

which establishes the theorem.

This identity is a powerful tool for obtaining elementary estimates for many
sums that arise in number theory, and is used in this report often without
any specific appeal. We now use it to prove some common knowledge facts.

Theorem A.2. For x > 0,

∑
n≤x

1

x
= log x+O(1)

Proof. Putting an = 1 and f(t) = 1/t in the partial summation identity, we
see that A(x) =

∑
n≤x 1 = bxc and thus,

∑
n≤x

1

x
=
bxc
x

+

∫ x

1

btc
t2
dt
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Now, using bxc = x− {x} = x+O(1),

∑
n≤x

1

x
=
x+O(1)

x
+

∫ x

1

t+O(1)

t2
dt

Thus, the first term is clearly O(1). Furthermore, the error term in the
integral evaluates to

∫ x

1

dt

t2
= 1− 1

x

which contributes O(1). Hence, the main term is

∫ x

1

dt

t
= log x+O(1)

Hence our claim follows.

We now turn to the identities relating π(x) and ϑ(x).

Theorem A.3. For any real number x > 0, we have

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t(log t)2
dt

ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt

Furthermore, these relations hold with π(x) replaced by π(x; q, a) and ϑ(x)
replaced by ϑ(x; q, a).

Proof. Putting an = 1P(n) log n and f(t) = 1/ log t, we get A(x) = ϑ(x)
and f ′(t) = −1/t(log t)2 in the partial summation identity. Furthermore,
the left hand side become π(x), giving us the first identity.

Similarly, putting an = 1P(n) and f(t) = log t, we get A(x) = π(x) and
f ′(t) = 1/t. Furthermore the left hand side becomes ϑ(x), giving us the
second identity.
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In either identity if we replace 1P(n) with 1P(a,q)(n) where

P(a, q) = {p ∈ P : p ≡ a (mod q)}

then we obtain the relations between π(x; q, a) and ϑ(x; q, a), analogously.

A.2 Farey Fractions

The Farey fractions are sequences of rational numbers which are recurring
in number theory. For a fixed positive integer Q, the sequence of Farey
fractions, FQ is the set of all rational numbers in [0, 1] whose denominator
in reduced form is ≤ Q, ordered with respect to the natural ordering on the
reals.

Thus, for example, F1 is

0

1
,
1

1

F2 is

0

1
,
1

2
,
1

1

F3 is

0

1
,
1

3
,
1

2
,
2

3
,
1

1

and so on.
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