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1. Introduction

The goal of this note is to prove the following fact:

Theorem 1.1. Let G be a finite Abelian group, and H ⊆ G a subgroup.
Then, G contains an isomorphic copy of G/H.

In other words, whenever H ⊆ G is a subgroup, then G/H ↪−→ G. The
proof we will provide will use the character (or representation) theory
of finite Abelian groups, which is also called Fourier analysis on finite
Abelian groups.

The proof uses two facts. The first is that if G is a finite Abelian group

then G ≈ Ĝ where by ≈ we mean isomorphism. The second is that in

the category of finite Abelian groups, G 7→ Ĝ is an exact contravariant
functor. Thus, if H ⊆ G, we have the short exact sequence

0 −→ H −→ G −→ G/H −→ 0

and by contravariance and exactness, this gives us a short exact se-
quence

0 −→ Ĝ/H −→ Ĝ −→ Ĥ −→ 0

whose first joint tells us that Ĝ/H ↪−→ Ĝ. However, since Ĝ ≈ G and

Ĝ/H ≈ G/H, we conclude that G/H ↪−→ G as desired.

In the rest of this note we formalize these statements without using
categorical language. For the rest of this note, G and H will always
be finite Abelian groups written additively, with the identity always
denoted by 0.

In Section 2, we state without proof the group theoretic preliminaries;
in Section 3 we describe the basics of character theory and prove the
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exactness of the functor; and finally, in Section 4 we prove that every
finite Abelian group is isomorphic to its dual.

2. Group Theory Preliminaries

Theorem 2.1 (Weak Fundamental Theorem). Let G be a finite Abelian
group. Then, either G is cyclic or G ≈ H ×K for non-trivial groups
H and K.

Note that the two possibilities here are not mutually exclusive, since,
for example, Z/6Z ≈ Z/2Z×Z/3Z. We call this the weak fundamental
theorem since this is a trivial consequence of either form of the usual
fundamental theorem of finite Abelian groups – it’s interesting to note
that this (and, in fact, the fundamental theorem in its full strength) has
a purely character theoretic proof, together with the simple fact that
for any x ∈ G, o(x) divides the exponent of the group, maxa∈G o(a).
We will not pursue this here, see [Con] for more details.

3. The Exactness of Pontryagin Duality

For G, we define its (Pontryagin) dual group Ĝ as Hom(G,S1). That
is, if S1 = {z ∈ C : |z| = 1}, then we have the following:

Definition 1. Let G be a finite Abelian group. Then,

Ĝ = {χ : G→ C× : χ is a group homomorphism}

is clearly an Abelian group under point-wise multiplication. This group
is called the dual group of G.

The dual group will turn out to be finite since G ≈ Ĝ, as proved in

Section 4. The functoriality of G 7→ Ĝ is a consequence of the fact
that Hom(·, ·) is contravariant in the first variable. Concretely, it is the
following statement:

Proposition 3.1. Let ϕ : H → G be a group homomorphism. Then,

ϕ̂ : Ĝ→ Ĥ defined by

ϕ̂(χ) = χ ◦ ϕ

is also a group homomorphism.
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Proof. This is straightforward; ϕ̂(χ) is a composition of homomor-
phisms H → G → S1 and hence is in Hom(H,S1). Checking that

ϕ̂ : Ĥ → Ĝ is a homomorphism is routine.

�

One of half of showing the exactness of the dual functor is the following:

Proposition 3.2. Let ϕ, ϕ̂ be as in Proposition 3.1. Then, ϕ is sur-
jective implies that ϕ̂ is injective.

Proof. Let χ, ν ∈ Ĝ such that χ 6= ν. Thus, in particular, there is a
g ∈ G such that χ(g) 6= ν(g). Since ϕ : H → G is surjective, g = ϕ(h)
for some h ∈ H. However, this implies that χ(ϕ(h)) 6= ν(ϕ(h)), and
hence ϕ̂(χ)(h) 6= ϕ̂(ν)(h), and hence ϕ̂(χ) 6= ϕ̂(ν). This shows that ϕ̂
is injective.

�

Note that Proposition 3.2 already reduces Theorem 1.1 to showing that

G ≈ Ĝ for every G. To see this, apply Proposition 3.2 to the canonical

surjection G −� G/H to get an embedding Ĝ/H ↪−→ Ĝ.

The other half of exactness is equivalent to the following lifting property
on characters:

Lemma 3.3. Let H ⊆ G, and χ a character on H. Then, there exists
an extension χ′ of χ to G.

Proof. We first restate what we want to show. For χ ∈ Ĥ, we want to
find χ′ ∈ G such that χ′|H = χ.

Note that G = 〈H,S〉 for some finite set S. With a simple induction
on |S|, we can assume without loss of generality that S = {g} for some
g ∈ G, and hence G = 〈H, g〉. Let k be the order of g modulo H. That
is, let k be the minimal positive integer such that kg ∈ H. Further,
define a = kg. Since a ∈ H, χ(a) is well-defined. Let z ∈ C be any
solution to the equation zk − χ(a) = 0.

Now, arbitrary x ∈ G can be written as x = h + mg for m ∈ Z and
h ∈ H. We define,

χ′(x) = χ(h)zm.
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If χ′ is well-defined, it is easily seen to be a homomorphism into S1.

To show that it is well-defined, suppose that x = h′+m′g is a different
representation for x. Then, (m−m′)g = h′−h ∈ H, and since k is the
order of g in G/H, this implies k | (m −m′). Writing m −m′ = kq,
and hence (m−m′)g = qa. We get that

χ(h′ − h) = χ((m−m′)g)

= χ(qa)

= χ(a)q

= (zk)q

= zkq

= zm−m
′

which proves well-definedness.

�

Thus, we get the other half of exactness:

Proposition 3.4. Let ϕ, ϕ̂ be as in Proposition 3.1. Then, ϕ is injec-
tive implies that ϕ̂ is surjective.

Proof. If ϕ(H) ⊆ G, and so characters on ϕ(H) can be extended to
G. Further, since ϕ is injective, ϕ(H) ≈ H, and so a character on H
can be transported to a character in ϕ(H). Let χ be a character on H,
and χ′ the character on G obtained by first pulling back the character
along ϕ−1 to get a character on ϕ(H), and then extending it using the
lifting lemma.

The claim is that ϕ̂(χ′) = χ. To see this, let h ∈ H. Then, we want to
compute χ′(ϕ(h)). However, since ϕ(h) ∈ ϕ(H), this is χ(ϕ−1(ϕ(h)) =
χ(h). This completes the proof.

�

4. Self-Duality of Finite Abelian Groups

As remarked earlier, the only missing link in our proof is showing that
if G is a finite Abelian group, then it is isomorphic to its Pontryagin
dual.
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First, we observe that 3.2 and 3.4 together imply that the dual is an
isomorphism invariant:

Corollary 4.1. If G ≈ H, then Ĝ ≈ Ĥ.

Proof. It suffices to show that if ϕ : H → G is isomorphism then ϕ̂ is
a bijection. This follows from the fact that ϕ is a bijection, together
with Propositions 3.2 and 3.4.

�

With this we can show the following atomic case:

Proposition 4.2. If G is a cyclic group then G ≈ Ĝ.

Proof. By the previous corollary, we can assume without loss of gen-

erality that G = Z/qZ. A character χ ∈ Ĝ is completely determined
by what it does to the generator 1 ∈ Z/qZ. Further, χ(1)q = 1 since
χ(q) = χ(1)q and q = 0 in Z/qZ.

For the sake of argument, choose a qth root of unity and assign it to
χ(1). If e(t) = e2πit, then the qth roots of unity are of the form e(a/q)
with a ∈ Z/qZ. Define χa by,

χa(x) = e

(
ax

q

)
.

It is easily verified that χa is a character on Z/qZ, and that χa(1) =
e(a/q), and hence from our previous discussion, the set {χa : a ∈ Z/qZ}
is all of Ĝ. Finally, it is easily verified that the map a 7→ χa is a bijective
homomorphism and we are done.

�

To be able to glue together the result for all finite Abelian groups,
we need to be able to glue things when taking Cartesian products.
In particular, the Pontryagin dual behaves as you would expect with
products.

Proposition 4.3. Suppose that G,H and K are finite Abelian groups

such that G ≈ H ×K. Then Ĝ ≈ Ĥ × K̂.
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Proof. Without loss of generality, suppose G = H ×K.

Let χ ∈ Ĝ. Define ν ∈ H and η ∈ K by ν(h) = χ(h, 1) and η(k) =
χ(1, k).

Finally, let ν ∈ H and η ∈ K. Define χ ∈ G by χ(h, k) = ν(h)η(k).

It is a straightforward exercise to see that the maps χ 7→ (ν, η) and
(ν, η) 7→ χ defined above are between the sets described, are inverses
of each other, and are both homomorphisms.

�

We are now ready to prove the self-duality of finite Abelian groups:

Proposition 4.4. Let G be a finite Abelian group. Then, G ≈ Ĝ.

Proof. We induct on the size |G|. The case |G| = 1 is trivially true.

By Theorem 2.1, we have that either G is cyclic or that G = H×K for
H,K non-trivial. In the first case, we can apply 4.2 to conclude that

G ≈ Ĝ.

In the second case, we have that 1 < |H|, |K| < |G| and so the strong

inductive hypothesis tells us that H ≈ Ĥ and K ≈ K̂. Thus, H×K ≈
Ĥ × K̂. Finally, G ≈ H × K implies Ĝ ≈ Ĥ × K̂. Putting these

together, we get that G ≈ Ĝ, closing the induction, and we are done.

�

References

[Con] Keith Conrad. Characters of finite abelian groups.
URL:https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
(version: 2021-01-04). 2

Department of Mathematics, University of Rochester
Rochester, NY 14627, USA

Email address: asahay@ur.rochester.edu

https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
mailto:asahay@ur.rochester.edu

	1. Introduction
	2. Group Theory Preliminaries
	3. The Exactness of Pontryagin Duality
	4. Self-Duality of Finite Abelian Groups
	References

