Problem Solving Seminar

AMS Grad Student Chapter, University of Rochester

6th March, 2020
Problem $1\left(+++^{*}\right.$, MOP Test 2008/7/2). Suppose that a, b, c are positive real numbers such that for every integer n,

$$
\lfloor a n\rfloor+\lfloor b n\rfloor=\lfloor c n\rfloor
$$

Prove that at least one of a, b, c is an integer.
Problem 2 (??, Problem 1.55 from [GP14]). Suppose that X is a metric space, Y is a complete metric space, $D \subseteq X$ is a nonempty set and $f: D \rightarrow Y$ is a continuous function. Show that f can be extended continuously to a G_{δ}-subset of X containing D.
Problem 3 (+, Chapter 2, Problem 39 from KT06). Two players alternately choose uncountable subsets $K_{0} \supset K_{1} \supset \cdots$ of the real line. Show that no matter how the first player plays, the second one can always achieve

$$
\bigcap_{n=0}^{\infty} K_{n}=\emptyset
$$

[^0]
References

[GP14] L. Gasińksi and N.S. Papageorgiou. Exercises in Analysis. Number pt. 1 in Problem Books in Mathematics. Springer International Publishing, 2014.
[KT06] Péter Komjáth and Vilmos Totik. Problems and theorems in classical set theory. Springer Science \& Business Media, 2006.

Hints

1. If x is irrational, then $\{x n\}=x n-\lfloor x n\rfloor$ is equidistributed in $[0,1)$. Sample n uniformly at random from $\{1, \cdots, N\}$ and take $N \rightarrow \infty$.

[^0]: ${ }^{*}+$ indicates hardness; the more plusses there are, the harder I think the problem is. Conversely, - indicates easiness. ? indicates I don't know the solution, and the number of ?s indicates how hard I think the solution probably is.

