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Problem 1 (+++∗, MOP Test 2008/7/2). Suppose that a, b, c are positive real numbers such
that for every integer n,

banc+ bbnc = bcnc

Prove that at least one of a, b, c is an integer. 1

Problem 2 (??, Problem 1.55 from [GP14]). Suppose that X is a metric space, Y is a complete
metric space, D ⊆ X is a nonempty set and f : D → Y is a continuous function. Show that f can
be extended continuously to a Gδ-subset of X containing D.

Problem 3 (+, Chapter 2, Problem 39 from [KT06]). Two players alternately choose uncountable
subsets K0 ⊃ K1 ⊃ · · · of the real line. Show that no matter how the first player plays, the second
one can always achieve

∞⋂
n=0

Kn = ∅

.

∗+ indicates hardness; the more plusses there are, the harder I think the problem is. Conversely, − indicates
easiness. ? indicates I don’t know the solution, and the number of ?s indicates how hard I think the solution
probably is.
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Hints

1. If x is irrational, then {xn} = xn−bxnc is equidistributed in [0, 1). Sample n uniformly at random from {1, · · · , N}
and take N →∞.
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