Problem Solving Seminar

AMS Grad Student Chapter, University of Rochester

11th November, 2019
Problem $1\left(+++^{*}\right.$, Putnam 1971). Let c be a real number such that n^{c} is an integer for every positive integer n. Show that c is a non-negative integer.
Problem 2 (?? Moscow State University (2013) \ddagger. Let $x_{1}, \cdots, x_{k} \in S^{n-1}=\mathbb{R}^{n}$ be points on the unit sphere such that

$$
0 \in \operatorname{conv}\left\{x_{1}, \cdots, x_{k}\right\}
$$

where conv represents the convex hull. With the convention that $x_{k+1}=x_{1}$, show that

$$
\sum_{j=1}^{k}\left\|x_{j}-x_{j+1}\right\| \geq 4
$$

Problem $3(++$ Hat00 . For $1 \leq p<\infty$

$$
\ell^{p}(\mathbb{N})=\left\{\left(a_{n}\right)_{n=1}^{\infty}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{p}<\infty\right\}
$$

Now, let

$$
S_{p}^{\infty}=\left\{x \in \ell^{p}(\mathbb{N}):\|x\|_{\ell^{p}(\mathbb{N})}=1\right\}
$$

Show that S_{p}^{∞} is contractible.
Further, let

$$
V_{0}=\left\{\left(a_{n}\right)_{n=1}^{\infty}: \exists N, \forall n \geq N, a_{n}=0\right\}
$$

be the set of sequences that are eventually zero. Show that $V_{0} \cap S_{p}^{\infty}$ is contractible.
Problem 4 (???, Problem 16 from Jia). Let R be a noncommutative ring with unity, and suppose the elements $x, y \in R$ are such that both $(1-x y)$ and $(1-y x)$ are invertible. Show that

$$
(1+x)(1-y x)^{-1}(1+y)=(1+y)(1-x y)^{-1}(1+x)
$$

[^0]
References

[Hat00] Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
[Jia] Ziling Jiang. Abstract algebra, 18.a24 guest lecture: Fall 2018. Yufei Zhao's webpage. http://yufeizhao.com/a34/fa18/algebra.pdf (version: 2019-11-8).

Hints

1. What happens when you take successive differences?

[^0]: * + indicates hardness; the more plusses there are, the harder I think the problem is. Conversely, - indicates easiness. ? indicates I don't know the solution, and the number of ?s indicates how hard I think the solution probably is.
 \dagger Translated by Firdavs from their geometry contest
 \ddagger This problem was paraphrased by Brian

