Problem Solving Seminar

AMS Grad Student Chapter, University of Rochester

25th November, 2019
Problem $1\left(++^{*}\right.$, contributed by Lucas). Let \mathcal{S} be a smallest class of functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ (possibly with singularities) such that

- $(x, y) \mapsto x$ and $(x, y) \mapsto y$ are in \mathcal{S}.
- $f, g \in \mathcal{S} \Longrightarrow f+g, f-g \in \mathcal{S}$
- $f \in \mathcal{S} \Longrightarrow 1 / f \in \mathcal{S}$

Does the map $(x, y) \mapsto 2019$ belong to \mathcal{S} ?
Problem $2(++$, contributed by Firdavs). Consider the vector space \mathcal{V},

$$
\mathcal{V}=\left\{\left(a_{n}\right)_{n=1}^{\infty}: a_{n} \in \mathbb{F}\right\}
$$

the space of sequences over the field \mathbb{F} with addition and scalar multiplication given by componentwise operations. Show that the Hamel basis of \mathcal{V} over \mathbb{F} is not countable.

Problem 3 (????). Is there a non-degenerate notion of a topological manifold over a finite field \mathbb{F}_{p}, or a topological manifold over the algebraic closure $\overline{\mathbb{F}_{p}}$?

Problem 4 (??, IMO 200 ${ }^{\dagger}$). Let a_{1}, \cdots, a_{n} be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+\cdots+a_{n}$. A grasshopper is to jump along the real axis, starting at point 0 and making n jumps to the right with lengths a_{1}, \cdots, a_{n} in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

[^0]
References

[Tao] Terry Tao. Imo 2009 q6 as a mini-polymath project. Terry Tao's blog. (version: 2019-11-25).

Hints

1. Probably obvious, but diagonalize (in both obvious senses of the word).

[^0]: * + indicates hardness; the more plusses there are, the harder I think the problem is. Conversely, - indicates easiness. ? indicates I don't know the solution, and the number of ?s indicates how hard I think the solution probably is.
 ${ }^{\dagger}$ solved in a mini-polymath TaO

