Problem Solving Seminar

AMS Grad Student Chapter, University of Rochester

28th October, 2019
Problem $1\left(+^{*}\right.$ USAMO 1991). Show that, for any fixed integer $n \geq 1$, the sequence

$$
2,2^{2}, 2^{2^{2}}, 2^{2^{2^{2}}}, \cdots \quad(\bmod n)
$$

is eventually constant.
Problem 2 (??, from [1]). Prove that every polynomial $f(x) \neq 0$ has a multiple $g(x)=f(x) h(x) \neq$ 0 in which every exponent is prime. That is,

$$
g(x)=\sum_{p} a_{p} x^{p}
$$

where the sum is over primes.
Problem 3 (++, Pairs at Maximum Distance from Alex's copy of [2]). Let $X \subseteq \mathbb{R}^{2}$ be a finite set. Suppose X contains n points, and the maximum distance between any two of them is d. Prove that at most n pairs of points of X are at distance d. \square
Problem 4 (???, translated from the Soviet Student Olympiads in Mathematics by Firdavs). Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a decreasing sequence of positive real numbers such that

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}=\infty
$$

Show that

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x
$$

is not Lebesgue integrable on $[0,2 \pi]$.

References

[1] László Babai. Reu 2012 - problems, puzzles problem sheet. Author's Webpage. http://people.cs.uchicago.edu/ laci/REU12/puzzles.pdf (version: 2019-10-28).
[2] Peter Winkler. Mathematical puzzles: a connoisseur's collection. AK Peters/CRC Press, 2003.

Hints

1. If $\{A, B\}$ and $\{C, D\}$ are pairs of points in X such that $A B=C D=d$, then what can you say about the line segments $A B$ and $C D$?
[^0]
[^0]: *+ indicates hardness; the more plusses there are, the harder I think the problem is. Conversely, - indicates easiness. ? indicates I don't know the solution, and the number of ?s indicates how hard I think the solution probably is.

