Exercises for the Rochester AMS Grad Student Chapter Problem Solving Seminar

Nikolaos Chatzikonstantinou

28th October, 2019

(<u>Note:</u> The exercises below are independent of each other)

Let $n \in \mathbb{N}, n \geq 2$, and $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ with the surface measure σ defining integration on the unit sphere. A set $\Lambda \subset S^{n-1}$ is δ separated for some $\delta > 0$ if $x, y \in \Lambda$ and $x \neq y$ implies $|x - y| \geq \delta$. The characteristic function is denoted by $1_Q(x) = 1$ if $x \in Q$ and 0 if $x \notin Q$.

The Stein-Thomas restriction conjecture [S] is

$$\|\widehat{f\sigma}\|_{L^p} \lesssim \|f\|_{L^2(\sigma)}, \quad p \ge \frac{2(n+1)}{n-1}.$$
(*)

An equivalent discrete version (see [BD]) is that for all $0 < \delta \leq 1$, for all $\Lambda \subset S^{n-1}$ sets which are $\delta^{1/2}$ separated, all $a_{\xi} \in \mathbb{C}$ and all balls B_R (of any center) where $R \sim \delta^{-1/2}$, the following holds

$$\left(\frac{1}{|B_R|} \int_{B_R} |\sum_{\xi \in \Lambda} e^{ix \cdot \xi} a_{\xi}|^p\right)^{1/p} \lesssim \delta^{\frac{n}{2p} - \frac{n-1}{4}} \|a_{\xi}\|_{l^2_{\xi}(\Lambda)}.$$
 (**)

(Here $|B_R|$ denotes the volume of B_R)

1. Prove the exponent in (*) is necessary by applying (*) to

$$f(x) = 1_{B(N,\delta) \cap S^{n-1}}(x).$$

Here $N \in S^{n-1}$ is a point and $B(N, \delta)$ is a ball of radius δ centered at N. (Estimate f by $1_{Q_{\delta}}$ where Q_{δ} is a $\delta \times \cdots \times \delta \times \delta^2$ rectangle; the Fourier transform of $1_{Q_{\delta}}$ is "essentially supported" on a $\delta^{-1} \times \cdots \times \delta^{-1} \times \delta^{-2}$ rectangle).

- 2. For $p \geq \frac{2(n+1)}{n-1}$, conjugate q and some C > 0, show the equivalences:
 - (a) $\|\widehat{f\sigma}\|_{L^p} \leq C \|f\|_{L^2(\sigma)}$.
 - (b) $\|\widehat{f}\|_{L^{2}(\sigma)} \leq C \|f\|_{L^{q}}$.
 - (c) $\|\widehat{\sigma} * f\|_{L^p} \le C^2 \|f\|_{L^q}$.
- 3. Show the equivalence between (*) and (**).

Remarks:

The inequality (**), although discrete is richer than the continuous counterpart (*). For example, looking at higher spatial scales $R \sim \delta^{-1}$, it is possible to obtain an improvement on the δ exponent,

$$\left(\frac{1}{|B_R|} \int_{B_R} |\sum_{\xi \in \Lambda} e^{ix \cdot \xi} a_{\xi}|^p\right)^{1/p} \lesssim \delta^{\frac{n+1}{2p} - \frac{n-1}{4}} \|a_{\xi}\|_{l^2_{\xi}(\Lambda)}.$$
 (\diamondsuit)

I found this fact, that a discretized version can be riched than its continuous counterpart, quite interesting and wanted to share it with you.

This improvement (\diamondsuit) is a direct application of the l^2 decoupling inequality recently proven in [BD]. For this and numerous other applications, see [BD].

References

- [S] Stein, E. "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals".
- [BD] Bourgain, J., & Demeter, C. (2015). The proof of the l^2 Decoupling Conjecture. Annals of Mathematics, 182(1), second series, 351-389.