Exercises for the Rochester AMS Grad Student Chapter Problem Solving Seminar

Nikolaos Chatzikonstantinou

28th October, 2019
(Note: The exercises below are independent of each other)
Let $n \in \mathbb{N}, n \geq 2$, and $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ with the surface measure σ defining integration on the unit sphere. A set $\Lambda \subset S^{n-1}$ is δ separated for some $\delta>0$ if $x, y \in \Lambda$ and $x \neq y$ implies $|x-y| \geq \delta$. The characteristic function is denoted by $1_{Q}(x)=1$ if $x \in Q$ and 0 if $x \notin Q$.

The Stein-Thomas restriction conjecture $[\mathrm{S}]$ is

$$
\begin{equation*}
\|\widehat{f \sigma}\|_{L^{p}} \lesssim\|f\|_{L^{2}(\sigma)}, \quad p \geq \frac{2(n+1)}{n-1} \tag{}
\end{equation*}
$$

An equivalent discrete version (see $[\mathrm{BD}]$) is that for all $0<\delta \leq 1$, for all $\Lambda \subset S^{n-1}$ sets which are $\delta^{1 / 2}$ separated, all $a_{\xi} \in \mathbb{C}$ and all balls B_{R} (of any center) where $R \sim \delta^{-1 / 2}$, the following holds

$$
\begin{equation*}
\left(\frac{1}{\left|B_{R}\right|} \int_{B_{R}}\left|\sum_{\xi \in \Lambda} e^{i x \cdot \xi} a_{\xi}\right|^{p}\right)^{1 / p} \lesssim \delta^{\frac{n}{2 p}-\frac{n-1}{4}}\left\|a_{\xi}\right\|_{l_{\xi}^{2}(\Lambda)} . \tag{**}
\end{equation*}
$$

(Here $\left|B_{R}\right|$ denotes the volume of B_{R})

1. Prove the exponent in $\left(^{*}\right)$ is necessary by applying $\left({ }^{*}\right)$ to

$$
f(x)=1_{B(N, \delta) \cap S^{n-1}}(x) .
$$

Here $N \in S^{n-1}$ is a point and $B(N, \delta)$ is a ball of radius δ centered at N. (Estimate f by $1_{Q_{\delta}}$ where Q_{δ} is a $\delta \times \cdots \times \delta \times \delta^{2}$ rectangle; the Fourier transform of $1_{Q_{\delta}}$ is "essentially supported" on a $\delta^{-1} \times \cdots \times \delta^{-1} \times \delta^{-2}$ rectangle).
2. For $p \geq \frac{2(n+1)}{n-1}$, conjugate q and some $C>0$, show the equivalences:
(a) $\|\widehat{f \sigma}\|_{L^{p}} \leq C\|f\|_{L^{2}(\sigma)}$.
(b) $\|\widehat{f}\|_{L^{2}(\sigma)} \leq C\|f\|_{L^{q}}$.
(c) $\|\widehat{\sigma} * f\|_{L^{p}} \leq C^{2}\|f\|_{L^{q}}$.
3. Show the equivalence between $\left(^{*}\right)$ and $\left({ }^{* *}\right)$.

Remarks:

The inequality $\left({ }^{* *}\right)$, although discrete is richer than the continuous counterpart $\left(^{*}\right)$. For example, looking at higher spatial scales $R \sim \delta^{-1}$, it is possible to obtain an improvement on the δ exponent,

$$
\left(\frac{1}{\left|B_{R}\right|} \int_{B_{R}}\left|\sum_{\xi \in \Lambda} e^{i x \cdot \xi} a_{\xi}\right|^{p}\right)^{1 / p} \lesssim \delta^{\frac{n+1}{2 p}-\frac{n-1}{4}}\left\|a_{\xi}\right\|_{l_{\xi}^{2}(\Lambda)} .
$$

I found this fact, that a discretized version can be riched than its continuous counterpart, quite interesting and wanted to share it with you.

This improvement (\diamond) is a direct application of the l^{2} decoupling inequality recently proven in $[\mathrm{BD}]$. For this and numerous other applications, see [BD].

References

[S] Stein, E. "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals".
[BD] Bourgain, J., \& Demeter, C. (2015). The proof of the l^{2} Decoupling Conjecture. Annals of Mathematics, 182(1), second series, 351-389.

