Question Bank for Final Exam

MA 35100 (Spring 2024, Section 130)
April 28th, 2024

Notes

- There will be three types of questions on the final exam: T/F (True or False), MCQs (Multiple Choice Questions), and Long Answer Questions (LAQs).
- This is a sample question bank for LAQs.
- For samples of T / F and MCQs, please see the exam archives.
- The structure of the final exam will be as follows:
$-10 \mathrm{~T} / \mathrm{Fs}(2$ points each $=20$ points total).
-4 MCQs (5 points each $=20$ points total). Each MCQ will have 5 options, of which only one is correct.
-4 LAQs (6-10 points each depending on complexity $=30$ points total)
- The final exam will be worth 70 points total.

Long Answer

Problem 1. Compute the LU decomposition of the following matrix:

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 7 & 11 \\
-1 & -4 & -9 & -16 & -25 \\
0 & 0 & 4 & 8 & 12
\end{array}\right]
$$

Problem 2. Find all (complex) solutions of the following system of equations:

$$
\begin{aligned}
i z_{1}+z_{2}-(1+i) z_{3} & =1+4 i \\
3 z_{1}+i z_{2} & =3 \\
-z_{1}-z_{2}+(2+i) z_{3} & =2+4 i
\end{aligned}
$$

Problem 3. Diagonalize the following matrix:

$$
\left[\begin{array}{ccc}
0 & 5 & 3 \\
-3 & 8 & 3 \\
7 & -13 & -4
\end{array}\right]
$$

Problem 4. Consider the sequence given by $a_{0}=0, a_{1}=1$, and

$$
a_{n}=2 a_{n-1}+a_{n-2} \quad \text { for } n \geq 2
$$

Find a formula for a_{n}.
Problem 5. Solve the following initial value problem:

$$
\begin{aligned}
& x_{1}^{\prime}=2 x_{1}+x_{2}, \\
& x_{2}^{\prime}=-x_{1}+2 x_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{1}(0)=0, \\
& x_{2}(0)=1
\end{aligned}
$$

Problem 6. Solve the following initial value problem:

$$
\begin{gathered}
y^{\prime \prime}=5 y^{\prime}-6 y \\
y(0)=0, \quad y^{\prime}(0)=-1 .
\end{gathered}
$$

Problem 7. Consider the sequence given by $a_{0}=1, a_{1}=3$, and

$$
a_{n}=5 a_{n-1}-a_{n-2} \quad \text { for } n \geq 2
$$

Find a formula for a_{n}.
Problem 8. Consider the set $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4}\right\}$ given by

$$
\vec{b}_{1}=(1,1,1,1), \quad \vec{b}_{2}=(1,-1,1,-1), \quad \vec{b}_{3}=(1,1,-1,-1), \quad \vec{b}_{4}=(1,-1,-1,1)
$$

(a) Find $b_{i} \cdot b_{j}$ for every i, j. (Don't forget the case $i=j$).
(b) Why can you conclude that \mathcal{B} is a basis of \mathbb{R}^{4} ?
(c) Find $[\vec{x}]_{\mathcal{B}}$, where $\vec{x}=(4,8,0,-12)$.

Problem 9. Find the general solution $y(t)$ to the ODE

$$
y^{(3)}=2 y^{(2)}+5 y^{\prime}-6 y .
$$

Problem 10. Consider the sequence given by $a_{0}=1, a_{1}=3, a_{2}=9$ and

$$
a_{n}=2 a_{n-1}+5 a_{n-2}-6 a_{n-3} \quad \text { for } n \geq 3
$$

Find a formula for a_{n}.

