
MA 351 LECTURE NOTES: FORMULAE FOR FIBONACCI
NUMBERS USING THE GOLDEN RATIO

ANURAG SAHAY

1. Introduction

The so-called golden ratio φ is defined as follows: if you break a line segment into
two parts so that the ratio of the whole to the bigger part is proportional to the ratio
of the bigger part to the smaller part, then the segment is divided into the golden
ratio. Thus, if a is the bigger part and b is the smaller part,

φ =
a+ b

a
=

a

b
.

In several artistic fields (most notably, architecture) people incorporated the golden
ratio into their works, especially during the Renaissance. From the definition, we see
that

φ = 1 +
b

a
= 1 +

1

φ
,

and with some rearrangement that λ = φ must be a solution to the polynomial

p(λ) = λ2 − λ− 1.

The quadratic formula now tells us that

φ =
1 +

√
5

2
≈ 1.618,

where here we have discarded the other root of p(λ), (1 −
√
5)/2 ≈ −0.618 since

ratios cannot be negative. Observe that the other root is actually

1− φ = − 1

φ
=

1−
√
5

2
.

In 1202, the Italian mathematician Fibonacci described what is now called the
Fibonacci sequence in his manuscript Liber Abaci1, which appeared earlier in Sanskrit

Date: 16th April, 2024.
1Among other things, this is the book that popularized the the numeral system (0, 1, 2, 3, · · · , 9)

among Europeans – he learnt them from Arabic writings of Arab and Persian mathematicians, who
themselves learnt it much earlier from writings of Indian mathematicians. This is the reason they
are called “Arabic” or “Indo-Arabic” numerals.

1



MA 351, NOTES 1 2

poetry by Pingala (∼200 BC). This sequence is defined by

F0 = 0, F1 = 1, (1)

Fn = Fn−1 + Fn−2 (n ⩾ 2). (2)

The first few Fibonacci numbers are given by

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · ,

and this is sequence A000045 in the Online Encyclopedia of Integer Sequences (OEIS).
In fact, there are many journals and conferences devoted entirely to the study of this
sequence.

An equation like (2) is called a linear recurrence and the Fibonacci numbers are
an example of a linear recurrent sequence (more on this in §5). Likely you have seen
Fibonacci numbers if you ever learned programming; computing the nth Fibonacci
number is a basic exercise in recursion. But, perhaps you did not know that there
is an explicit formula for the nth Fibonacci number Fn – using the golden ratio, φ!
The formula states that

Fn =
φn + (−1)n+1φ−n

√
5

. (3)

At first glance, this is a surprising connection, even unbelievable – for one thing, the
left hand side is clearly an integer while it is completely unclear that the right hand
side will be an integer. Hopefully these notes will convince you that (3) is true –
maybe even natural.

2. A naive connection

Before getting into the thick of things, let us describe a naive and easy to see
connection between φ and Fn. If the limit

lim
n→∞

Fn+1

Fn

,

exists, then it must be equal to φ. Roughly, this is saying that if n is large, then
Fn+1 ≈ φFn. To see this, suppose that the limit exists and equals ρ. Then,

ρ = lim
n→∞

Fn+1

Fn

= lim
n→∞

Fn + Fn−1

Fn

= lim
n→∞

(
1 +

1

Fn/Fn−1

)
= 1 +

1

ρ
,

where we have used the recurrence (2) together with some properties of limits. But
this implies that ρ = φ, since ρ is clearly nonnegative and also a root of p(λ).
Of course, this calculation is only valid if we can show that the limit exists, which

we do not know a priori. This would follow from (3), as for large n, φ−n is negligible

https://oeis.org/A000045
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in size compared to φn, and so Fn ≈ φn/
√
5 and hence

Fn+1

Fn

≈ φn+1/
√
5

φn/
√
5

= φ.

This calculation can be made rigorous using techniques from calculus.

3. Introducing matrices

The key insight that will help us derive (3) is the idea to package consecutive
Fibonacci numbers into one unit. That is, we define a vector

vn =

[
Fn+1

Fn

]
∈ R2.

(Warning: the index in these notes is slightly off from what I used in class.)
We see that then, the initial value information (1) is given by

v0 =

[
F1

F0

]
=

[
1
0

]
.

What about the recurrence relation, (2)? One has, for n ⩾ 1,

vn =

[
Fn+1

Fn

]
=

[
Fn + Fn−1

Fn

]
.

Clearly, this latter depends only on vn−1 = (Fn, Fn−1) and so we find that

vn =

[
1 1
1 0

] [
Fn

Fn−1

]
= Avn−1,

where

A =

[
1 1
1 0

]
.

Thus, the information in (2) can be represented by the equation vn = Avn−1. But
now, it follows simply by repetitive application of the vector recurrence that

vn = Avn−1 = A2vn−2 = A3vn−3 = · · · = An−1v1 = Anv0.

Thus, to know Fn, it suffices to compute the action of a large power of A on v0.
This is exactly the situation that merits diagonalization! In class, we did this by
writing

A = PDP−1,

where D is diagonal matrix composed of eigenvalues of A and P is a matrix whose
corresponding columns are the eigenvectors of A. Then An = PDnP−1, and so

vn = PDnP−1v0.



MA 351, NOTES 1 4

We know v0 already, and we can calculate P , Dn and P−1 easily by diagonalizing. In
these notes we will take a marginally simpler looking approach (though it amounts
to the same thing).

4. Diagonalizing the matrix A

4.1. The characteristic polynomial and the eigenvalues. As always in a prob-
lem like this, the first step is to compute the characteristic polynomial of A. This
is

det(A− λI) =

∣∣∣∣1− λ 1
1 −λ

∣∣∣∣ = (1− λ)(−λ)− 1 = λ2 − λ− 1.

Here we see already a rigorous connection to φ! The characteristic polynomial of
A is the same as the polynomial p(λ) from the introduction. Thus, we get that A
has two distinct eigenvalues, λ1 = φ and λ2 = −φ−1, and hence A is diagonalizable.

4.2. The eigenspace for λ1 = φ. We need to find the nullspace of

A− λ1I =

[
1− φ 1
1 −φ

]
.

Doing the elementary row operation R1 ↔ R2 followed by R2 → R2 − (1−φ)R1, we
get [

1 −φ
0 0

]
,

where we used the fact that

1− (1− φ)(−φ) = −(φ2 − φ− 1) = −p(φ) = 0.

Thus, a quick calculation tells us that the eigenspace is spanned by (φ, 1).

4.3. The eigenspace for λ2 = −φ−1. A similar calculation will give that the eigen-
vector for −φ−1 is (−φ−1, 1). Note that there is a symmetry here between φ and
−φ−1 (we replaced φ by −φ−1 in both the eigenvalue and the eigenvector to get
another eigenpair). This is similar to HW 13, Q4 (a) and to the fact that if we take a
statement involving the imaginary unit i and replace every occurrence of i with −i,
this leaves the truth value of the statement unchanged. Here,

√
5 is playing the same

role as i =
√
−1; if you took any statement in this set of notes2 and changed every

occurence of
√
5 to −

√
5, the resulting statement will still be true. These are special

cases of a general phenomenon that you may learn if you do abstract algebra (MA
450/453/454/553 etc.), which is that certain types of statements cannot distinguish
between roots of an irreducible polynomial.

2Don’t try this at home! I haven’t stated this very precisely.
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4.4. Deriving the formula. We know from a theorem proved in class that if

b1 =

[
φ
1

]
, b2 =

[
−φ−1

1

]
then {b1, b2} is linearly independent (since they are eigenvectors of distinct eigenval-
ues) and hence is a basis for R2. With some additional effort (do it!), we find that,
in fact,

v0 =

[
1
0

]
=

1√
5

[
φ
1

]
− 1√

5

[
−φ−1

1

]
=

1√
5
(b1 − b2).

But now,

vn = Anv0 = An

(
1√
5
(b1 − b2)

)
=

1√
5
(Anb1 − Anb2)

=
1√
5
(λn

1b1 − λn
2b2),

where in the penultimate equality we used the fact that An is linear while in the
ultimate equality, we used the fact that if (λ, b) is an eigenpair for A then (λn, b) is
an eigenpair for An. Plugging in the values, we find that[

Fn+1

Fn

]
= vn = Anv0 =

1√
5

(
φn

[
φ
1

]
− (−φ−1)n

[
−φ−1

1

])
=

1√
5

[
φn+1 + (−1)n+2φ−(n+1)

φn + (−1)n+1φ−n

]
.

Comparing the second coordinates of the two sides, we get the desired formula

Fn =
φn + (−1)n+1φ−n

√
5

.

Amazing!

5. Linear Recurrent Sequences

A similar idea applies generally to linear recurrent sequences which are sequences
(an)

∞
n=0 where d ⩾ 1 is some fixed number3, a0, a1, · · · , ad−1 are numbers4 that need

to be specified, which satisfy the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ cd−1an−d+1 + cdan−d (n ⩾ d). (4)

3called the degree of the recurrence
4called the initial values
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We will write5 c⃗ = (c1, · · · , cd).
These are called linear since the recurrence (4) shows that an depends linearly

on the previous d elements in the sequence. The Fibonacci numbers are the basic
example with degree d = 2 and vector of coefficients (c1, c2) = (1, 1).

Example 5.1 (Lucas numbers). The Lucas numbers are defined by L0 = 2, L1 = 1
and Ln = Ln−1 + Ln−2 for n ⩾ 2. Thus, as with the Fibonacci numbers, we have
degree d = 2 and vector of coefficients (c1, c2) = (1, 1), but in this case the initial
values are different. The first few elements are

2, 1, 3, 4, 7, 11, 18, 29, · · · ,

and this is A000032 on OEIS.

Example 5.2 (Tribonacci numbers). If we set d = 3, and (c1, c2, c3) = (1, 1, 1),
(a2, a1, a0) = (1, 1, 0), we get a sequence whose first few terms are

0, 1, 1, 2, 4, 7, 13, 20, · · · .

These are the so-called Tribonacci numbers6, which is A000073 on OEIS.

Example 5.3 (Jacobsthal sequence). If we set d = 2, and (c1, c2) = (1, 2), (a1, a0) =
(1, 0), we get a sequence whose first few terms are

0, 1, 1, 3, 5, 11, 21, 43, · · · .

This is A001045 on OEIS and is called the Jacobsthal sequence.

Example 5.4 (Fibonacci-like exponential sequences). The sequence

Φ = (1, φ, φ2, φ3, φ4 · · · ),

(i.e., Φn = φn) is the same as the linear recurrent sequence with degree d = 2,
coefficients (c1, c2) = (1, 1), and initial values (Φ1,Φ0) = (φ, 1). This is because
when n ⩾ 2,

φn = φn−2φ2 = φn−2(φ+ 1) = φn−1 + φn−2.

In fact, by replacing every occurrence of
√
5 with −

√
5 (or directly, by a similar

calculation), one can see that the sequence

Φ′ = (1,−φ−1, φ−2,−φ−3, φ4 · · · ),
(i.e., Φ′

n = (−φ−1)n) satisfies the same recurrence but with initial data (Φ′
1,Φ

′
2) =

(−φ−1, 1) instead.

5calling it the vector of coefficients or simply coefficients
6Rest assured, there was no mathematician with the name Tribonacci.

https://oeis.org/A000032
https://oeis.org/A000073
https://oeis.org/A001045
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Example 5.5 (General exponential sequences). More generally, for any degree d ⩾ 1
and coefficients c⃗ = (c1, c2, · · · , cd) giving a recurrence, one can associate with the
recurrence an auxiliary polynomial (also called characteristic polynomial) defined by

pc⃗(λ) = λd − c1λ
d−1 − c2λ

d−2 − · · · − cd−1λ− cd.

In particular, if λ is any root of this polynomial, then the sequence

Λ = (1, λ, λ2, λ3, λ4, · · · )
satisfies the recurrence an = c1an−1 + · · · cdan−d.

The general idea to solve linear recurrences is to define

vn =


an+d

an+d−1
...

an+1

an

 ∈ Rd,

so that the value of v0 = (ad−1, · · · , a0) encodes the initial values of the sequence,
and the recurrence can be written as

vn = Avn−1 (n ⩾ 1),

where

A = Ac⃗ =



c1 c2 c3 · · · cd
1 0 0 · · · 0
0 1 1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


is a d × d matrix. Then, if A is diagonalizable, one can find an explicit formula for
an that depends only on the roots of the characteristic polynomial pc⃗(λ) and on the
initial value data a0, · · · , ad−1.

6. Underlying Vector Spaces

In this section, we will take a sketchy7and much more high-brow approach to our
calculations in the hope that it will explain conceptually what is happening. The
message we want to convey is that in retrospect it is somewhat natural that matrices
can be used here once you realize that the underlying mechanism has a vector space
that is behaving nicely.

7By this I mean I will not justify every statement – you should think of each statement in this
section as having an implicit parenthetical remark saying “check!”.
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Recall R∞, the space of all infinite real sequences8,

R∞ = {(an)∞n=0 : an ∈ R}.
A cautionary note about notation. When referring to a sequence

(an)
∞
n=0 = (a0, a1, a2, · · · ),

we will use an to refer to the nth entry in this sequence (this is a real number),
the tuple notation (an) when we want to refer to the whole sequence as a single
object, and a when we want to emphasize the point of view that it is a single object
(namely, it is a “point” in the space R∞). Sometimes, we will want to take a (finite)
sequences of “points” in R∞. In this case, we will use superscripts like b(j) to indicate
the position to avoid confusion with the entries of the “point” when thought of as a
sequence itself.

We discussed a while ago in class9 that R∞ is a vector space under entry-wise
addition and scalar multiplication. That is, for a = (an), b = (bn) ∈ R∞ and any
c ∈ R,

a+ b = (an + bn),

ca = (can).

There is a very natural map acting on R∞ called the shift map (also called the
left-shift operator) which is of fundamental importance in the field of dynamical
systems10. Precisely S : R∞ → R∞ is given by

S(a0, a1, a2, a3, a4, · · · ) = (a1, a2, a3, a4, a5, · · · ).
In other words, S deletes the first entry in the sequence, and shifts every other entry
to the left. In fact, S is a linear transformation.
Now fix a degree d ⩾ 1 and coefficients c⃗ = (c1, · · · , cd) which determine a recur-

rence (4). Now, we can define,

Vc⃗ = {a ∈ R∞ : an = c1an−1 + · · · cdan−d for n ⩾ d}. (5)

In other words, Vc⃗ is the set of all sequences that satisfy the satisfying the same
recurrence formula (4). It can be shown that Vc⃗ is a subspace of R∞. For example,
take F,L ∈ V(1,1) where F is the Fibonacci sequence and L is the Lucas sequence,
and define G = F + L. The first few elements of this sequence are

2, 2, 4, 6, 10, 16, 26, 42, · · · ,
8In this note, we take the convention that all sequences start at the index 0.
9There it was discussed as the canonical example of an infinite-dimensional vector space.
10Very broadly, dynamical systems is the study of some space under repeated applications of the

same map. Each application of the map is to be thought of as evolution under time, so that the
asymptotics explain the long-range behaviour of the system after a lot of time. This is useful all
over pure and applied mathematics, including in physics, biology, computer science...
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which clearly satisfies Gn = Gn−1 +Gn−2 for n ⩾ 2.
Furthermore, the shift map S restricts to a linear transformation on Vc⃗. That is,

if a ∈ Vc⃗, then S(a) also lies in Vc⃗. Thus, we will abuse notation and write

S : Vc⃗ → Vc⃗.

(If we were not abusing notation, we would call the restriction of S to Vc⃗ something
like Sc⃗.)

Note that to specify an element a in Vc⃗ one needs only to specify d real numbers
– i.e., the initial values (ad−1, · · · , a0). This suggests that Vc⃗ has dimension d, even
though R∞ is finite dimensional. This can be shown rigorously by finding a basis11.
Thus, we can summarize this as

Theorem 6.1. Let d ⩾ 1 and c⃗ = (c1, · · · , cd) and Vc⃗ be as defined in (5). Then Vc⃗

is a finite-dimensional vector subspace of R∞, with dimVc⃗ = d.

Since Vc⃗ is of dimension d, it must be isomorphic to Rd. In fact, the map D : Vc⃗ →
Rd given by

D(a) = (ad−1, ad−2, · · · , a1, a0),
is an explicit isomorphism.

The way all of this theory connects to our earlier calculations is as follows. Define,

B = {b(1), · · · , b(d)}
where each b(j) lies in R∞ and is defined by D(bj) = ej, where

ej = (0, · · · , 0, 1, 0, · · · , 0) ∈ Rd

is the standard basis vector having 1 at the jth position and 0s elsewhere. By the
discussion above, this set is a basis for V . Further, since S is a linear transformation
on Vc⃗, it must have a matrix in the basis B. If one runs through the calculation for
this matrix one will find that this is exactly the matrix A from §5! In other words,
the matrix [S]B is the d× d matrix given by

c1 c2 c3 · · · cd
1 0 0 · · · 0
0 1 1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

To see why this is the case, try to think of what the initial value data of S(a) is
when a ∈ R∞ has initial value data (ad−1, · · · , a0).

11Hint: Take b(j) ∈ Vc⃗ to be the sequence which has the standard basis vector in ej ∈ Rd as its
initial value data.



MA 351, NOTES 1 10

Thus, when we diagonalize A, one can think of that as “diagonalizing” the shift
operator S – i.e., we are finding a basis for Vc⃗ in which the matrix of the linear
transformation S is diagonal. The elements of this basis are extremely explicit.
To be precise, the discussion from Example 5.5 in §5 tells us that if the auxiliary
polynommial

pc⃗(λ) = λd − c1λ
d−1 − · · · − c0

has d distinct roots given by λj (1 ⩽ j ⩽ d), then the sequences Λ(j) ∈ R∞ (1 ⩽
j ⩽ d) given by

Λ(j) = (1, λj, λ
2
j , λ

3
j , λ

4
j , · · · )

all lie in Vc⃗. It can be shown12 that these are all linearly independent. Then, if

B′ = {Λ(1), · · · ,Λ(d)},

then B′ is the desired basis. Consider the action of S on these elements:

S(Λ(j)) = S(1, λj, λ
2
j , λ

3
j , λ

4
j , · · · )

= (λj, λ
2
j , λ

3
j , λ

4
j , λ

5
j , · · · )

= λj(1, λj, λ
2
j , λ

3
j , λ

4
j , · · · )

= λjΛ
(j),

and so Λ(j) is an “eigenvector”13 of S with eigenvalue λj.
Thus, the reason this technique works is that we happen to have a very concrete

description of the eigenvectors of the shift operator (see Problem 8 below).

7. Exercises

These problems are not for credit and are only for you to test your understanding.
Starred problems will not be tested on the exam.

Problem 1. Using similar techniques to §4, find a formula for the nth entry in the
Lucas sequence, the Tribonacci sequence, and the Jacobsthal sequence.

Problem 2. Consider the sequence a0 = 0, a1 = 1 and

an = 2an−1 − an−2.

Will the techniques from §4 work for this sequence? Why or why not?

12Though, not easily – see Problem 7 below.
13Eigenvectors of linear transformations T : V → V are defined to be vectors v ∈ V satisfying

T (v) = λv for some scalar λ. This is in analogy with the matrix case where V = Rn and T is some
matrix operator.



MA 351, NOTES 1 11

Problem 3. Let r = (rn) be a sequence satisfying the recurrence with d = 2 and
c⃗ = (−1,−1). Pick initial values r0 and r1 of your choice and write out the first few
elements in this sequence. What do you observe? Will your observation be valid for
any initial values? Try to relate this to the characteristic polynomial and the method
from §4.

Problem 4. Show that {F,L} is a basis for V(1,1). Here F (resp. L) is the Fibonacci
(resp. Lucas) sequence.

Problem 5. Show that {Φ,Φ′} is a basis for V(1,1). Here Φ and Φ′ are the Fibonacci-
like exponential sequences described in Example 5.4.

Problem 6*. Show that (3) is invariant under the replacement of
√
5 with −

√
5.

(Hint: you need to change all occurences of
√
5 in the formula, even the ones that

are not immediately apparent.)

Problem 7*. Let d = 3 and c⃗ = (c1, c2, c3) be such that

λ3 = c1λ
2 + c2λ+ c3

has three distinct roots λ1, λ2, λ3. Show that B⃗′ = {Λ(1),Λ(2),Λ(3)} is a basis for Vc⃗.
[Hint: B′ is a basis for Vc⃗ if and only if D(B′) = {D(Λ(1), D(Λ(2), D(Λ(3)} is a basis
for R3 (why?). Try to relate the question of D(B′) being linearly independent to a
Vandermonde matrix (cf. HW 10, Problem 2).]

Problem 8*. Consider the shift map as a linear transformation on the full space
R∞. Show that for any scalar λ ∈ R, λ is an eigenvalue of S. What is its eigenspace?
Funky things can happen here since R∞ is an infinite-dimensional space!
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