
MA 351 LECTURE NOTES: RANDOM WALKS ON GRAPHS

ANURAG SAHAY

1. Introduction

In these lecture notes1, we will discuss how linear algebra (specifically: diagonal-
ization) can be applied to study random walks on finite graphs. These notes are
peppered with problems – these problems are designed to help understand the ma-
terial, so I recommend doing them as you read, instead of at the end. The problems
are not for credit. Pay special attention to problems which are starred, since I am
likely to test them in the exam.

Without further ado, let us describe an example of a random walk on a graph.
A dog (named Bella) is in a triangular park. The park has three open spaces which

are connected by small roads. Consider2 Figure 1 for a schematic representation of
the park where we have labeled the open spaces. Bella is experiencing zoomies.
At time 0, Bella starts in space 1. Then, after each second, she gets excited and
randomly runs down one of the paths available to her to the open space at the other
end. You should imagine she flipped an unbiased coin: if she flips heads, she runs to
the space which is counter-clockwise from her current position, while if she flips tails,
she runs to the space which is clock-wise. In Figure 2, we have drawn the possible
configurations that show up after two seconds.

This is a very simple example of a random walk on a graph – as you shall see below,
it is a walk on the graph K3. Our goal in this note is to systematically student walks
like these. While this theory also has purely aesthetic value, it is an extremely useful
tool with many diverse applications – for e.g., it is the basis of Google’s PageRank
algorithm, it is used in modeling the spread of disease in epidemiology, it can be used
to study shuffling of a deck of cards, and it underlies many Monte Carlo simulation
techniques.

Date: 29th April, 2025.
Acknowledgments: We thank Abhibhav Garg for useful discussions.
1These notes are currently incomplete: §8 will be updated later to include a proof sketch for

Theorem 7.4.
2All figures for this note are hand-drawn and can be found at:

https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
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2. Graphs

Before getting into the thick of things, we should spend some time with our basic
objects of study, graphs3, since they are, on the face of it, somewhat disconnected
with the topics we have discussed in class till date.

Formally, a graph G is a pair of sets (V,E). In this note, the set V will always be
taken to be {1, . . . , n}, the first n natural numbers for n ⩾ 1. This is called the set
of vertices (sing. vertex). The set E is a collection “edges” on V ; an edge is formally
defined as a pair of vertices.

When thinking about graphs, however, one should not be too attached to the
formalities. It is usually to think about the picture that a graph represents. To draw
a graph, one represents vertices by dots (or points) and edges by lines connecting
the corresponding vertices. In Figure 3, we depict the graph with V = {1, 2, 3} and
E = {12, 23, 13}. This graph is usually calledK3 (K for “complete”, since all possible
edges between vertices are included), though it is sometimes called C3 (C for “cycle”,
since it looks like a cycle). In Figure 4, we depict the graph with V = {1, 2, 3, 4} and
E = {12, 23, 34, 14}. This graph is called C4.
For us, graphs will always be simple and undirected. This means that:

• The edges are unordered: 12 represents the same edge as 21.
• The graph is loopless – the vertices in each edge are distinct. Thus, the edge
11 or 22 is not allowed.

• Multiple edges are not allowed. Thus, 12 may only appear once in E.

In Figure 5, we draw some examples of disallowed configurations.
With these exceptions in mind, we can try drawing all the possible graphs with

small n. A crucial point here is that the labels of the vertices is relatively unimpor-
tant; if we desire, we can always relabel the vertices in the beginning. With this in
mind, convince yourself that Figure 6 includes all the possible graphs (up to relabel-
ing) with n ⩽ 3. In Figure 6, we also include some (but not all) graphs with n = 4,
namely C4, K4 and K2 ⊕K2.

Problem 1. Draw all possible graphs on 4 vertices.

We say that two vertices i, j ∈ V are adjacent if ij ∈ E. We say that an edge e
is incident on a vertex j if e contains j. That is, e = ij = ji for some other vertex
i ∈ V .

If j ∈ V is a vertex in G, a crucial number associated with it is its degree.

Definition 2.1. The degree of a vertex j ∈ V is the number of edges in E that are
incident on it. This is denoted by deg(j).

3This is the notion of graphs from combinatorics – nothing to do with graphs of a function from
calculus!
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Let us start with some computation.

Problem 2. Compute the degrees of all the vertices in graphs depicted in Figure 6.

For the rest of this note, we will restrict our attention to graphs having constant
degree, viz. the regular graphs.

Definition 2.2. For fixed d ⩾ 2, a graph G = (V,E) is called d-regular if for every
j ∈ V

deg(j) = d.

Further, if G is d-regular for some d ⩾ 2, then we call G a regular graph and call d
its regularity.

Note that d = 1 could also be allowed, in principle, but that does not lead to any
interesting graphs, especially when one insists that the graph also be connected (see
§8 for a definition of connected).

Problem 3. Verify that K3 and C4 are 2-regular and K4 is 3-regular. Are any there
any other regular graphs in Figure 6? What about in Problem 1? If so, determine
their regularity.

While much of what we will discuss now can also be achieved for irregular graphs,
the formulae and definitions get more involved. Thus, for simplicity, we will only
discuss random walks on regular graphs.

3. Random walks on regular graphs

We will now formally describe what a random walk on a regular graph is. We will
fix d ⩾ 2 and G a d-regular graph throughout this discussion. We now introduce a
discrete variable t which takes values in W = N∪{0}. This should be interpreted as
a (discrete) time variable. The random walker (such as Bella from the introduction;
hereinafter, walker) will do a random walk on the graph which transitions as t runs
through W.
At time 0, starts at a vertex of the graph G. Without loss of generality, we can

assume the walker starts at the vertex 1, since we may relabel the vertices to achieve
this.

At time4 t ∈ N, the walker moves from the vertex they were at at time t− 1 to an
adjacent vertex uniformly with probability 1/d (i.e., at time t, the walker is equally
likely to be at any vertex adjacent to their position at time t − 1 and is definitely
not at any of the other vertices).

This is a simple example of a Markov chain. In this context, Markov means
memoryless: at any given point in time, the history of the walk is irrelevant when

4For me, the natural numbers N = {1, 2, 3, . . .} does not include 0, so in this line it is implicit
that t ⩾ 1.
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deciding the next step of the walk. Bella’s zoomies from the introduction are now
manifestly seen to be modeled by a random walk on K3.
Now, we seek to formally represent the state of the random walk at time t.

Definition 3.1. A vector p⃗ ∈ Rn is called a state vector or a probability distribution
if

pj ⩾ 0 (1 ⩽ j ⩽ n)

and
n∑

j=1

pj = p1 + p2 + · · ·+ pn = 1.

Another(!) alternate name for this is probability vector.

Problem 4. Show that every probability distribution satisfies

pj ⩽ 1 (1 ⩽ j ⩽ n).

Since the pj ∈ [0, 1] and they sum to 1, they can be interpreted as probabilities of
disjoint5 events. In particular, at each time instant t, we can describe the state of
the random walk using a probability distribution p⃗(t) whose components are given
by

pj(t) = Pr[walker is at state j at time t]. (1)

Here Pr[·] stands for the probability that the event in brackets occurs.
For warm-up, you should try the following problems.

Problem 5. Check that for every t ∈ W, p⃗(t) is a state vector.

Problem 6. Verify that at t = 0, p1(0) = 1 and pj(0) = 0 for all 2 ⩽ j ⩽ n.

Problem 7. Verify that at t = 1,

pj(1) =

{
1
d

if j is adjacent to 1,

0 otherwise.

In Figure 7, we calculate the state vectors at times t = 0, 1, 2 for Bella’s random
walk.

Problem 8. Extend Figure 7 to the next step and hence calculate the state vector
p⃗(3).

Our next goal is to understand how to systematically obtain p⃗(t+ 1) from p⃗(t).

5Two or more events are disjoint if no pair of them can happen at the same time.
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4. Enter the matrix: adjacency and walk

To achieve this goal, we will finally need to get back to linear algebra. In particular,
we will associate to each graph two matrices – the adjacency matrix and the walk
matrix – which will help us understand the evolution of the state p⃗(t).

Definition 4.1. The adjacency matrix A of a graph G on n vertices is an n × n
matrix whose entries are given by

aij =

{
1 ij ∈ E,

0 otherwise.

In other words, the ijth entry of A is 1 if ij is an edge and otherwise it is 0.

Applying this definition to G = K3, we see that

A =

0 1 1
1 0 1
1 1 0

 .

Similarly, for G = C4, we get

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Problem 9*. Compute the adjacency matrices for G = K4 and G = K2 ⊕K2.

Note that ij and ji are the same edge. This implies that aij = aji for every
i, j ∈ V , whence A is symmetric. Further, jj is never an edge (why?) and hence
ajj = 0, thus the diagonal entries are always zero.

Definition 4.2. The walk matrix (also called the transition matrix ) of a d-regular
graph G is the n× n matrix defined by the equation

M = (1/d)A.

In other words,

mij =

{
1/d ij ∈ E,

0 otherwise.

The letter M is used because it is the transition matrix of a Markov chain.

Problem 10*. Compute the walk matrices for G ∈ {K3, C4, K4}.
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An extremely important point is that mij has a probabilistic interpretation:

mij = Pr[j −→ i] = Pr[walker presently at vertex j moves to vertex i]. (2)

This is because if i and j are adjacent, then both mij and Pr[j −→ i] are 1/d while
if i and j are not adjacent, they are both 0.

5. Deriving the recurrence: the law of total probability

Using (2), we will now derive a recurrence relation for p⃗(t) that will let us compute
it. To do this, we will need a fact from probability theory called the law of total
probability. This states that if E is an event and {Aj}nj=1 a collection of mutually
exclusive but cumulatively exhaustive events, then

Pr[E] =
n∑

j=1

Pr[E|Aj] Pr(Aj).

Here Pr[E|A] is the (conditional) probability of the event E occurring given that the
event Aj has occurred. You may have seen this before in a course on probability; in
any case, we will simply assume this.

Taking E to be the event that the walker is at vertex k ∈ V at time t+ 1 and Aj

to be the event that the walker is at vertex j ∈ V at time t, we see that

Pr[E|Aj] = Pr[j −→ k] = mkj.

This is because if the walker is at vertex j at time t and then at vertex k at time
t + 1, then the walker must have walked along an edge from j to k. Further, from
(1), we get that

Pr[E] = pk(t+ 1), Pr[Aj] = pj(t).

Thus, the law of total probability implies that

pk(t+ 1) =
n∑

j=1

mkjpj(t). (3)

In principle, we have achieved our mini-goal: this describes p⃗(t+1) in terms of p⃗(t).
However, this description seems quite involved. Thankfully, this is exactly the kind
of complication that matrix multiplication was designed to solve! Using the index
formula for matrix multiplication, we see that (3) is equivalent to the equation

p⃗(t+ 1) = Mp⃗(t). (4)
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6. Solving the recurrence

By recursively using (4), we see that

p⃗(t) = Mp⃗(t− 1) = M(Mp⃗(t− 2)) = M2p⃗(t− 2) = M3p⃗(t− 3) = · · · = M tp⃗(0),

for every t ∈ N. Take care not to confuse M t here (which is M raised to the power t)
with MT , the transpose of M . Simplifying, we get that the recurrence (4) is solved
by

p⃗(t) = M tp⃗(0). (5)

Thus, to understand the time evolution of the random walk, we need to compute
high powers of the matrix – a task designed for diagonalization!

6.1. Generalities. Before we do some examples, let us recall the general principles
of using diagonalization in such a circumstance. Suppose an n × n matrix B is
diagonalizable and we want to compute Btv⃗ for some v⃗ ∈ Rn. Thus,

B = PDP−1,

where P =
[⃗
b1 · · · b⃗n

]
is a matrix whose columns are the eigenvectors of B and

D = diag(λ1, . . . , λn) is a diagonal matrix whose corresponding entries λj is the

eigenvalue corresponding to b⃗j. By a recursive calculation,

Bt = PDtP−1.

Thus, we see that

Btv⃗ = (PDtP−1)v⃗ = PDt(P−1v⃗) = PDt[v⃗]B, (6)

where we have used the fact that P−1 = CB, the coordinate matrix of the ordered ba-

sis B = {⃗b1, . . . , b⃗n}. Further, Dt = diag(λt
1, . . . , λ

t
n). Hence, it suffices to diagonalize

B and then write v⃗ in the basis B.

6.2. The case G = K3. We will now turn to solving Bella’s random walk in the
introduction, viz., the walk on the graph K3. We wish to diagonalize M . Before we
do this, we note that this is essentially the same as diagonalizing A.

Problem 11*. Show that

(λ, b⃗) is an eigenpair for A ⇐⇒ (λ/d, b⃗) is an eigenpair for M.

Conclude that if A = PDP−1 is the diagonalization of A, then M = P∆P−1 is the
diagonalization of M where ∆ = (1/d)D.

Let us now diagonalize A.
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6.2.1. Eigenvalues. We have that

A =

0 1 1
1 0 1
1 1 0

 , A− λI =

−λ 1 1
1 −λ 1
1 1 −λ

 .

A cofactor calculation (that you should check!) now shows that the characteristic
polynomial is given by

det(A− λI) = −λ3 + 3λ+ 2.

By some trial and error, we see that λ = −1 and λ = 2 are the two zeroes and we
obtain the factorization,

det(A− λI) = −(λ− 2)(λ+ 1)2.

Thus, λ1 = 2 is an eigenvalue with algebraic multiplicity 1 and λ2 = −1 is an
eigenvalue with algebraic multiplicity 2.

6.2.2. Eigenspace for λ1 = 2. We need to find the nullspace of

A− λ1I =

−2 1 1
1 −2 1
1 1 −2

 .

By row-reduction (check!), we find that A − λ1I is row-equivalent to the RREF
matrix 1 0 −1

0 1 −1
0 0 0

 .

From this, it follows that the nullspace (and hence the eigenspace of λ1) is the span
of (1, 1, 1).

6.2.3. Eigenspace for λ2 = −1. We seek now, the nullspace of

A− λ2I =

1 1 1
1 1 1
1 1 1

 .

It is now evident that the RREF matrix will be given by1 1 1
0 0 0
0 0 0

 .

Thus, the eigenspace of λ2 = −1 is the span of {(−1, 0, 1), (−1, 1, 0)}.
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6.2.4. Diagonalizing. Thus, we get that

A = PDP−1, M = P∆P−1

where

D =

2 0 0
0 −1 0
0 0 −1

 , ∆ =

1 0 0

0 −1
2

0

0 0 −1
2

 , P =

1 −1 −1
1 0 1
1 1 0

 .

6.2.5. Dénouement. Thus, on utilizing (6) to simplify (5), we find that

p⃗(t) = M tp⃗(0) = P∆t[p⃗(0)]B

where B = {⃗b1, b⃗2, b⃗3} are the columns of P . Recall that p⃗(0) = (1, 0, 0) since Bella
deterministically starts at vertex 1. A quick calculation shows that10

0

 =
1

3

11
1

− 1

3

−1
0
1

− 1

3

−1
1
0

 ,

whence [p⃗(0)]B = (1/3,−1/3,−1/3).
Thus,

p⃗(t) =

1 −1 −1
1 0 1
1 1 0


1 0 0

0 (−1
2
)t 0

0 0 (−1
2
)t




1
3

−1
3

−1
3

 =


1
3
+ 2

3
· (−1

2
)t

1
3
− 1

3
· (−1

2
)t

1
3
− 1

3
· (−1

2
)t

 (7)

Et voilà!

Problem 12. Check that (7) agrees with Figure 7 and Problem 8.

Problem 13. Observe that (7) implies that

lim
t→∞

⃗p(t) =

1/31/3

1/3

 .

This last problem implies that after a very long time, Bella is essentially equally
likely to be in any of the three vertices. This is an example of a mixing walk. We
will discuss this in more detail in §7.

6.3. The case G = C4. We now repeat this calculation for G = C4, since this
exhibits a different behaviour. We will be a bit sketchier with the details.

https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
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6.3.1. Eigenvalues. We have that

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 1 0 1
1 −λ 1 0
0 1 −λ 1
1 0 1 −λ

∣∣∣∣∣∣∣∣ = λ4 − 4λ2 = λ2(λ− 2)(λ+ 2).

6.3.2. Eigenvectors. By row-reduction, we find that

• The eigenvector of λ1 = 2 is b⃗1 = (1, 1, 1, 1).

• The eigenvector of λ2 = −2 is b⃗2 = (−1, 1,−1, 1).

• The eigenvectors of λ3 = λ4 = 0 are b⃗3 = (−1, 0, 1, 0) and b⃗4 = (0,−1, 0, 1).

6.3.3. Diagonalization. Thus

A = PDP−1, M = P∆P−1

where

D =


2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

 , ∆ =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , P =


1 −1 −1 0
1 1 0 −1
1 −1 1 0
1 1 0 1

 .

6.3.4. Dénouement. Thus, by (5) and (6)

p⃗(t) = P∆t[p⃗(0)]B,

where B = {⃗b1, b⃗2, b⃗3, b⃗4}. Since we start the walk at vertex 1,

p⃗(0) = (1, 0, 0, 0) = (1/4)⃗b1 + (−1/4)⃗b2 + (−1/2)⃗b3 + 0⃗b4.

Thus, we find that

p⃗(t) =


1 −1 −1 0
1 1 0 −1
1 −1 1 0
1 1 0 1



1 0 0 0

0 (−1)t 0 0
0 0 0 0
0 0 0 0




1/4

−1/4

−1/2
0

 =


1/4 + (−1/4)t

1/4− (−1/4)t

1/4 + (−1/4)t

1/4− (−1/4)t


Note that this formula is only valid for t ∈ N; it fails for t = 0!

Problem 14*. Check all the details of the above calculation for G = C4.

Problem 15. Let v⃗ = (1/2, 0, 1/2, 0) and w⃗ = (0, 1/2, 0, 1/2). Show that for t ⩾ 1,

p⃗(t) =

{
v⃗ if t is even,

w⃗ if t is odd.

Thus, conclude that p⃗(t) does not tend to a limit as t → ∞.
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A visual representation of how a random walk on C4 behaves is given in Figure 8.
This is an example of a non-mixing walk, since the probability distribution does not
spread around the entire graph as time passes.

7. Stationary distributions and mixing walks

Let us now try to understand why the long-range behaviour of the random walks
on K3 and C4 were different. The first observation is that the limiting distribution
u⃗ = (1

3
, 1
3
, 1
3
) for the walk on K3 has the property that it does not change under a

single step of the random walk:

Mu⃗ =

0
1
2

1
2

1
2

0 1
2

1
2

1
2

0




1
3
1
3
1
3

 =


1
3
1
3
1
3

 = u⃗.

It’s not too hard to Figure out that if a limit to p⃗(t) exists as t → ∞, then it must
satisfy Mu⃗ = u⃗. To see this, take limits on both sides of (4),

lim
t→∞

p⃗(t+ 1) = lim
t→∞

Mp⃗(t).

Since M is constant, the right hand side should converge to Mu⃗, while the left hand
side clearly converges to u⃗. A probability distribution which has this property is
called a stationary distribution.

Definition 7.1. A probability distribution u⃗ ∈ Rn is called a stationary distribution
for a random walk on a graph on n vertices if

Mu⃗ = u⃗,

where M is the walk matrix of the graph.

Problem 16*. Show that u⃗ = (1
4
, 1
4
, 1
4
, 1
4
) is a stationary distribution for the graph

C4.

Note that if u⃗ is a stationary distribution, then it is an eigenvector of M with
eigenvalue 1. It’s not clear that such an eigenvector always exists. However, we have
the following theorem.

Theorem 7.2. Every random walk on an undirected simple graph has a stationary
distribution.

In the general case, this is a difficult theorem; it uses Perron-Frobenius theory. In
the case of regular graphs, however, it is reasonably elementary.

Problem 17. Prove Theorem 7.2 for d-regular graphs. [Hint: try to guess what
the answer must be by generalizing the cases K3 and C4. Proving your guess will
require the index formula for matrix multiplication.]

https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
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Problem 16 and 17 indicated that C4 has a stationary distribution. Yet, random
walks on C4 do not converge to the stationary distribution. Let us be precise.

Definition 7.3. We say that a random walk on a graph converges or mixes if

lim
t→∞

p⃗(t) = u⃗,

where p⃗(t) is state vector of a random walk starting on any vertex and u⃗ is the
stationary distribution. In other words, we have

lim
t→∞

pj(t) = uj (1 ⩽ j ⩽ n).

In adjective form, such a walk is called a convergent random walk or a mixing
random walk. This naturally raises the question of which random walks mix. The
following theorem gives a complete answer.

Theorem 7.4. Let G be an undirected, simple graph on n vertices. Then,

The random walk on the graph G mixes ⇐⇒ G is connected and non-bipartite.

In the next (and final) section, we will describe what connected and bipartite mean
and provide a sketch of the proof of Theorem 7.4 in the case of regular graphs.

8. Mixing if and only if connected and not bipartite

A path in a graph is a sequence of vertices (v1, v2, · · · , vk) where consecutive vertices
form an edge. We say that the graph is between v1 and vk. Thus, for example (recall
Figure 6), (1, 2, 3) is a path in both K3 and C4, but it is not a path in K2 ⊕K2. A
graph is called connected there exists a path between any two vertices. Both K3 and
C4 are connected, but K2 ⊕K2 is not.

A graph G = (V,E) is called bipartite if there is a partition V = A ∪ B of the
vertex set into two disjoint sets such that every edge of the graph G has exactly one
vertex in both A and B. C4 is bipartite (see Figure 9) but K3 is not.

Problem 18. For each of the graphs in Figure 6, determine if they are connected,
bipartite, both, or neither.

Thus, Theorem 7.4 correctly predicts that the walk on K3 mixes but the walk on
C4 does not: they are both connected, but the latter is bipartite while the former is
not.

It should be clear that connectedness is a prerequisite for mixing: if the graph
is disconnected, then a random walk that starts in one connected component can-
not possibly escape and go to another connected component (see Figure 10 for an
example).

https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
https://www.math.purdue.edu/~sahay5/spring2025/ma35100/notes2_fig.pdf
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It is not so clear why bipartiteness should be a problem. Essentially, this is because
(cf. Problem 15) there is a sequence of looping states which go back and forth: there
are state vectors v⃗ ̸= w⃗ with the property that

Mv⃗ = w, Mw⃗ = v.

Thus, random walks can get caught in a loop where they alternate between the states
v⃗ and w⃗ and thus never converge. A schematic example is shown in Figure 11. In
the general case, these distributions are the ones which have zero probability in B
but are equally likely to be in any vertex of A (and vice-versa).

Department of Mathematics, Purdue University
Email address: anuragsahay@purdue.edu
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