MTH 165: Linear Algebra with Differential Equations

1st Midterm February 21, 2013

NAME (please print legibly):	-
Your University ID Number:	_
Indicate your instructor with a check in the box:	

Dan-Andrei Geba	MWF 10:00 - 10:50
Giorgis Petridis	MWF 13:00 - 13:50
Eyvindur Ari Palsson	MW 14:00 - 15:15

- The presence of of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all 7 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Find the explicit solution for the initial value problem

$$\frac{dy}{dx} = x^2 + x^2 y^2, \quad y(0) = 1.$$

$$\frac{dy}{dx} = x^2(1+y^2)$$

$$\frac{dy}{1+y^2} = x^2 dx$$

$$\gamma(0)=1 \Rightarrow \overline{T}=0+C=) C=\overline{T}$$

$$arctany = \frac{x^3}{3} + \frac{11}{4}$$

$$y = 4an\left(\frac{x^3}{3} + \frac{77}{4}\right)$$

2. (10 points) Solve the initial value problem

$$\frac{dy}{dt} + \frac{y}{2} - \frac{e^{t/3}}{2} = 0, \ y(0) = \frac{6}{5}.$$

$$\frac{dy}{dt} + \frac{1}{2}y = \frac{e^{t/3}}{2} \qquad P(t) = \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$inf. \ factor = e \qquad \int P(t) dt \qquad e^{t/2}$$

$$(y \cdot e) = \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$(y \cdot e) = \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$(y \cdot e) = \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$= \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$= \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$= \frac{1}{2} \qquad g(t) = \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$= \frac{1}{2} \qquad g(t) = \frac{1}{2} \qquad g(t) = \frac{e^{t/3}}{2}$$

$$= \frac{1}{2} \qquad g(t) = \frac{1}{2} \qquad$$

Page 3 of 7

3. (10 points) Consider the RC circuit which has

$$R = 2 \Omega$$
, $C = \frac{1}{8} F$, and $E(t) = 5 V$.

If q(0) = 7 coulombs, determine the current in the circuit for $t \ge 0$.

$$R \cdot i(t) + \underbrace{g(t)}_{C} = E(t) \qquad i(t) = g'(t)$$

$$2g' + 8g = 5 \Rightarrow g' + \frac{4g}{2} = \frac{5}{2}.$$

$$i.d. \text{ factor} = e \qquad find for = e'$$

$$(g \cdot e't)' = \frac{5}{2} \cdot e't$$

$$g \cdot e't = \frac{5}{8} \cdot e't + C$$

$$g(0) = 7 \Rightarrow 7 \cdot 1 = \frac{5}{8} \cdot t + C \Rightarrow C = \frac{57}{8}$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{5}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac{57}{8} \Rightarrow 0$$

$$g \cdot e't = \frac{57}{8} \cdot e't + \frac$$

Page 4 of 7

4. (10 points) A 200-gal tank initially contains 100 gal of pure water. Brine enters the tank through two faucets: one containing 0.2 lb/gal of salt flows in at the rate of 1 gal/min, while the second one containing 0.1 lb/gal of salt flows in at the rate of 3 gal/min. The well-stirred mixture flows out of the tank at the rate of 2 gal/min. How much salt is in the tank just before the solution overflows?

$$V(0) = 100$$
 $A(0) = 0$
 $A($

5. (10 points) Find the rank for the matrix

$$A = \begin{bmatrix} 5 & 2 & -5 \\ 9 & 4 & -7 \\ 4 & 1 & -7 \end{bmatrix}$$

by computing its reduced row-echelon form.

$$\begin{bmatrix}
3 & 2 & -5 \\
9 & 4 & -7 \\
4 & 1 & -7
\end{bmatrix}
\xrightarrow{RI \to RI - R3}
\begin{bmatrix}
1 & 1 & 2 \\
9 & 4 & -7 \\
4 & 1 & -7
\end{bmatrix}
\xrightarrow{R3 \to R3 - 4RI}$$

$$\begin{bmatrix}
1 & 1 & 2 \\
0 & -5 & -25 \\
0 & -3 & -15
\end{bmatrix}
\xrightarrow{R2 \to R3 + 3R2}
\begin{bmatrix}
1 & 1 & 2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{R1 \to R1 - R2}
\begin{bmatrix}
1 & 0 & -3 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{bmatrix}$$

6. (10 points) Solve the following linear system of equations:

$$\begin{cases} 3x_1 + x_2 + x_3 + 6x_4 = 14 \\ x_1 - 2x_2 + 5x_3 - 5x_4 = -7 \\ 4x_1 + x_2 + 2x_3 + 7x_4 = 17 \end{cases}$$

$$\begin{bmatrix}
3 & 1 & 1 & 6 & 1/4 \\
1 & -2 & 5 & -5 & -7
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 2 & 7 & 1/4 \\
4 & 1 & 2 & 7 & 1/4
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 2 & 7 & 1/4 \\
4 & 1 & 2 & 7 & 1/4
\end{bmatrix}$$