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First,
P(X>k)= iP(X:n)
n=k
Then, -
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+P(X=2)+P(X =3)+P(X =4)+ P(X =5) +

+P(X =3)+P(X =4)+ P(X =5) +
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+P(X=5)+

Where each row is the sum Y 2, P(X = n) (the first row k& = 1, the second row k = 2 and so on).
We can notice that there is n copies of P(X = n) in each column. Therefore we can see that
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For the geometric series,

P(X>k) = T;(l -p)"'p=(1- p)k‘lp;(l —p)"=(1-p)*'p (M) =(1-p)*!
Then,
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The normal distribution X ~ N (u, 0?) has the density function

1 1(z—p)\2
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If Z ~N(0,1), ,
P(Z € A) = EAB_ZQ/de



Then,
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Next, we can do integration by parts by letting u = 22, and dv = ze

isv=—e?"/2 Also, du = 2zdz. Then,
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The term on the left evaluates to 0, as the exponential term dominates z? for large |z|. We are then

left with
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Another way to see this is that E[Z?] involves integrating the product of an even and odd function,
producing the integral of an odd function over R. Next,
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We can do a change of variables and let y = . This then yields
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This is close to the integral done previously. We can simplify the cube term to
(oy + 1)° = o°y® + 30%y*p + 3oyp® + 1°

Then, we look at the integral
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The first term disappears, as this is just the integral we calculated previously. The second integral
is some constant terms multiplying F[Z?] = 1. The third term is constants multiplying E[Z] = 0.
The last term will simplify to p3. Therefore we get
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This will follow the binomial distribution. Let p = .00025, n = 10000. The probability that exactly

k people win is
n _
POV =)= )k -t

np(1 — p) = (10000)(1/4000)(3999/4000) ~ 2.5 < 10

Notice that



Therefore the exponential distribution should not be accurate. On the other hand

np?® = 10000/(40002) ~ 0.00063 < 0.01

Therefore an approximation via the Poisson distribution should be more accurate. Lets do this to

calculate the probability that the Joker doesn’t lose his cool. We can approximate

LAk
PW=k)=e T
Where A = E[W] = np = 2.5 =5/2. Then,
0 1
P(W <3)=P(W =0)+P(W=1)+P(W =2) ~ 528/ —5/2(5/2)
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This simplifies to produce the approximation

P(W < 3) ~ .54

45/ (5/2)
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