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The marginal distributions are defined by
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Given that f(z,y) is non-zero for 0 < y < 1 and y < < 2 — y, the domain of f(z,y) is an
triangle with vertices (0,0),(2,0), (1,1). However, these vertices are not part of the domain.
From this, we get
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Therefore we get
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The marginal distribution fy is calculated similarly, although with different integral bounds:
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The formula for expectation is
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This simplifies to
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The first integral evaluates to

After a u substitution of u = 2 — x, the second integral evaluates to
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This is the same as the integral above. Therefore we get a total of
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¢) First, P(X +Y <1) = P(X <1-Y). This can be computed using the joint distribution:
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The upper bound for the integration with respect to y is 1/2, as the joint distribution is non-
zero when y < © < 2 —vy. If x > y, then y < 1/2 in order for X + Y < 1. Evaluating the
integral above produces:
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Which becomes

2

The trinomial coefficient counts the number of ways one can partition n into three sets. A specific
ordering of W lectures with white chalk, Y lectures with yellow chalk and G lectures with green
chalk occurs with a probability of p‘{Vp%/pg (Independence is used here). The trinomial coefficient
counts the number of sequences of lectures for which W, Y, G white yellow and green chalks are used.

Therefore
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This idea extends to an arbitrary selection of chalk colors. If there is also red chalk,
P(W,Y,G, R) = n PV pY pCplt = n! W, Y G R
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