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a)

Let I; be the random variable equal to 1 if any students step out at the jt* floor and 0
otherwise. Then, N = Zjll:l I;. The probability that nobody leaves the elevator on the j*"

floor is -
10
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This comes from the uniformity of the floor selection as well as the independence of each

person. This means that
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By the linearity of expectation

Therefore,
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The random variable X, follows a binomial distribution with parameters n = 7, p = 1/11.

Therefore,
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The expectation of a random variable following the binomial distribution is np. Therefore
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The covariance between X; and Xs is
COV(Xl,XQ) = E[XlXQ} - E[Xl]E[XQ}

Let the seven people be labeled {1,2,...,7}. Let J; be a random random variable which is 1
if the 7" person steps out of the elevator on the first floor, and 0 otherwise. Define K, in the
same way for the second floor. Then,
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Expectation is linear, so we just need to figure out E[J;K,]. If i = n, the only outcome is 0,
as one person can only get out on one floor. Therefore this sum can be simplified to be over
1 # n. Then,

E[J;K,) = ()P(J; =1,K, = 1)+ (0)P(J; =0 or K, =0) = P(J; = 1,K,, = 1)



Since each person is independent, this is just the product
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If j # n, there are 72 — 7 = 42 terms. Therefore
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The covariance is then
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We can write 0
X=3
i=1

Where Y; is the random variable which is 1 if the i*" student is American, and 0 otherwise. First,
it is the case, that P(Y;) = % for all ¢. This follows from the exchangability of sampling without
replacement. With this fact,

E[X] =§E[Yil =§P(E=1>=20P<n:1)=—:f:16

For the variance, we use the fact that X is described by the Hypergeometric distribution. This has
a variance of

N —n
n
N -1
Where N = 40 is the total number of people, n = 20 is the number of trials, p = % is the ratio
between Americans and Non-Americans, and ¢ = 1 — p. Therefore
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For more information on the derivation for this, check examples 8.7 and 8.30 from the textbook.
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The covariance is given by
Cov(X,Y) = E[XY] - E[X]E[Y]

First,
E[X] = / px(z)xdr =0

— 00

E[XY] :/ px(x)zf(x)de =0
As px (z)z and px (z)x f(x) are odd functions. This is the case since px (z) and f(x) are even, while
x is odd. The product of even and odd functions are odd. Therefore the covariance is 0 provided that
E[Y] is finite. Suppose that f(z) # ¢, where c¢ is a constant. Then, X and Y are not independent,
as information about X completely determines Y. If f is constant, then knowledge about X does
not influence the output of f, and they are independent.



