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Abstract

In this thesis, we explore the value distribution of the Hurwitz zeta function,

ζ(s, α), specifically its moments on the critical line s = 1/2 + it, and some related

problems. When α is rational, this leads naturally to the study of moments of

products of Dirichlet L-functions on the critical line which are studied following

the approach of Gonek–Hughes–Keating [31] and Heap [38]. When α is irrational,

this connects to an interesting Diophantine problem which exhibits a paucity

phenomenon. On the basis of these considerations and others, we conjecture that∫ 2T

T

|ζ(1
2

+ it, α)|2k dt ∼ ck(α)T (log T )k
2

,

for an explicit constant ck(α) when α is rational, while∫ 2T

T

|ζ(1
2

+ it, α)|2k ∼ k!T (log T )k,

when α is algebraic of degree d ⩾ k or α is transcendental but for possibly an

exceptional set of null Lebesgue measure. Some of this includes joint work with

Winston Heap, and joint work with Winston Heap and Trevor Wooley.
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1 Introduction

The central object of this thesis is the Hurwitz zeta function, ζ(s, α). For a shift

parameter1 0 < α ⩽ 1, ζ(s, α) is defined by the infinite sum

ζ(s, α) =
∑
n⩾0

1

(n + α)s
,

for s = σ + it ∈ C, σ > 1, where the sum here runs over all non-negative integers,

including 0. Setting α = 1, one finds that

ζ(s, 1) = ζ(s) =
∑
n⩾1

1

ns

is the usual zeta function of Riemann. One can also check that

ζ(s, 1
2
) =

1

(1/2)s
+

1

(3/2)s
+

1

(5/2)s
· · ·

= 2s
(

1 +
1

3s
+

1

5s
+ · · ·

)
= 2s

(
1 − 1

2s

)
ζ(s) = (2s − 1)ζ(s).

However, when α ̸= 1/2, 1, there are no simple relationships between ζ(s, α) and

ζ(s).

Both zeta functions satisfy many similar properties:

1In principle, one may take α ∈ R\{0,−1,−2, · · · }, but it is typical to restrict to this interval

due to the simple relationship ζ(s, α)− ζ(s, α+ 1) = α−s.
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� They both converge absolutely in σ > 1, and uniformly on σ ⩾ σ0 > 1,

thereby defining a holomorphic function on σ > 1.

� They both extend to meromorphic functions on C with a simple pole at

s = 1, with residue 1.

� They both have “trivial” zeros on the negative real line, but are zero-free 2

in the region σ ⩾ 1 + α [80].

� They both satisfy a “functional equation” (see §1.1).

Despite these similarities, however, there are considerable differences between ζ(s)

and ζ(s, α) when α ̸= 1/2, 1:

� The Riemann zeta function has an Euler product,

ζ(s) =
∏
p

(1 − p−s)−1,

for σ > 1. The Hurwitz zeta function ζ(s, α) does not.

� For any δ > 0, ζ(s, α) has infinitely many zeroes with 1 < σ < 1 + δ.

This is due to Davenport and Heilbronn [24] for rational and transcendental

shifts; and due to Cassels [18] for algebraic irrational shifts). In particular,

the region 1 < σ < 1 + α is not zero-free, despite being in the domain of

absolute convergence!

� For σ1, σ2 with 1/2 < σ1 < σ2 < 1, there are infinitely many zeroes of

ζ(s, α) in the strip σ1 < σ < σ2, due to Voronin [84] for rational shifts

and due to Gonek [32] for transcendental shifts. In fact, one can show that

there are ≍σ1,σ2,α T many such zeroes up to height T . This is likely also

2The existence of an A = A(α) such that ζ(s, α) ̸= 0 for σ > A is straightforward, since as

ℜ(s) → ∞, the first term in ζ(s, α) decays exponentially slower than the other terms, giving

ζ(s, α) = α−s(1 + o(1)).
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true for algebraic irrationals, but this question appears to be open3. This is

in contrast with the Riemann zeta function, both in terms of its expected

behaviour4 and in terms of its known behaviour5.

The astute reader will have noticed that there appears to be a theme of trifur-

cating depending on whether α is rational, transcendental, or algebraic irrational.

This is not a coincidence; in contexts where some result about ζ(s, α) is known

for all three classes, the flavours of and difficulties in the proof depend heavily on

where α falls in this trichotomy. The most interesting case from the perspective

of arithmetic is when α ∈ Q. In this case, we write α = a/q, with (a, q) = 1, and

further, we can assume that q ⩾ 3. One has that

ζ(s, a
q
) =

∑
n⩾0

1(
n + a

q

)s = qs
∑
n⩾0

1

(qn + a)s
= qs

∑
m⩾a

m≡a (mod q)

1

ms
.

Since (a, q) = 1, one can now use the orthogonality of Dirichlet characters to write

1m≡a (mod q) =
1

φ(q)

∑
χ

χ(a)χ(m),

where here and throughout, 1P represents the indicator function of whether the

predicate P is true, and where sums over χ are taken over all Dirichlet characters

modulo q. Substituting this above, and interchanging the order of summation,

one obtains
qs

φ(q)

∑
χ

χ(a)
∑
m⩾1

χ(m)

ms
,

whence

ζ(s, a
q
) =

qs

φ(q)

∑
χ

χ(a)L(s, χ), (1.1)

3The preprint [62] has recently appeared, claiming to settle this problem for infinitely many

algebraic irrationals α.
4viz., the Riemann hypothesis – that there are no such zeroes
5since, due to zero density estimates, we know that there are ≪σ1,σ2 T 1−δ zeroes of ζ(s) with

ℜ(s) in the same strip, where δ = δ(σ1, σ2) > 0 may depend on the strip
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where L(s, χ) is the Dirichlet L-function associated with χ. By analytic con-

tinuation, (1.1) continues to hold wherever both sides are holomorphic, i.e. for

s ∈ C \ {1}. Thus, at least in principle, any question about the Hurwitz zeta

function for rational parameters can be converted into a question about linear

combinations of Dirichlet L-functions.

For α /∈ Q, no relationship similar to (1.1) is known. For algebraic α, number

theoretic aspects of the number field K = Q(α) may play a role6, but note that

algebraic integers of the form n+α typically constitute a very sparse subset of the

ring of integers OK , and so direct appeals to the arithmetic of K are of limited

value. When α is transcendental, by contrast, the techniques have an analytic

and probablistic flavor, as the harmonics

{(n + α)−it : n ⩾ 0},

behave essentially like independent random variables; this is because the set

{− log(n + α) : n ⩾ 0}, (1.2)

is clearly linearly independent over Q, and hence one may apply the Kronecker–

Weyl theorem.

The linear independence of (1.2) over Q is of central importance in the uni-

versality of the Hurwitz zeta function, and is the subject of a question raised by

Drungilas and Dubickas [26] – they essentially ask if (1.2) is always linearly depen-

dent when α is an algebraic number. The reader is referred to a nice manuscript

by Andersson [2] which discusses this question, its connection the universality of

ζ(s, α), and gives evidence that the answer to the question is yes by proving that

it follows from a conjecture of Martin [60] on smooth values of polynomials.

6For example, in [18], Cassels uses properties of Q(α) to prove that > 50% of (1.2) is linearly

independent when α is an algebraic irrational; this suffices for his purposes. See [87] for an

extension of this result.
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In this thesis, we will explore the moments of the Hurwitz zeta function on the

critical line. We will also investigate some ancillary Diophantine equations that

arise in the study of these moments. To define the basic object of study, let k ⩾ 0

be a fixed real number (usually an integer), and let T be large. Then, in analogy

with the moments of the Riemann zeta function (see (1.6) and other discussion in

§1.2), we define the moments of the Hurwitz zeta function7 by

Mk(T ;α) =

∫ 2T

T

|ζ(1
2

+ it, α)|2k dt, (1.3)

so that Mk(T ; 1) = Mk(T ). The goal of this thesis is to convince the reader of the

truth of the following two conjectures:

Conjecture 1.0.1 (S., 2023). Let k ∈ N and 0 < α ⩽ 1 be a fixed rational. Then,

we have

Mk(T ;α) ∼ ck(α)T (log T )k
2

as T → ∞, where ck(α) is a constant depending only on k and α. In particular,

if α = a/q with (a, q) = 1, then

ck(α) = ck
qk

φ(q)2k−1

∏
p|q

{ ∞∑
m=0

(
m + k − 1

k − 1

)2

p−m

}−1

, (1.4)

where ck = ck(1) is the usual proportionality constant for moments of ζ(s).

Conjecture 1.0.2 (Heap–S., 2023+). Let k ∈ N and 0 < α ⩽ 1 be a fixed

irrational. Then for algebraic α of degree d ⩾ k and almost all8 transcendental α

we have

Mk(T ;α) =

∫ 2T

T

|ζ(1
2

+ it, α)|2kdt ∼ k!T (log T )k

as T → ∞.

7Here, we are interested almost exclusively in the t-aspect. One may also integrate over the

α-aspect – see [28, Chapter 1.5] and references therein – but we shall refrain from discussing

this further.
8in the sense that the excecptional set is of null Lebesgue measure
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Conjecture 1.0.1 is the subject of the author’s published work [75], while Con-

jecture 1.0.2 is from ongoing work [41] joint with Winston Heap.

In the rest of this introduction, we first provide an exposition of the salient

properties of the Hurwitz zeta function and then review moments in the classical

settings of the Riemann zeta function and its connection to random matrix theory.

In Chapter 2 and Chapter 3, we present the author’s work [75] by specializing to

α = a
q
∈ Q; in the former chapter, we study moments of products of Dirichlet

L-functions, which arise naturally due to (1.1), while in the latter chapter we use

these to study the moments of ζ(s, a
q
). In Chapter 4, we justify Conjecture 1.0.2

by first considering the pseudomoments of the Hurwitz zeta function for α /∈ Q –

this is a simplified model for the moments in which many interesting features

of the Hurwitz zeta function already display themselves. This includes some

unpublished joint work with Winston Heap, and connects to our ongoing work

[41] on the fourth moment of the Hurwitz zeta function. Finally, in the same

chapter, we also discuss an interesting Diophantine problem arising from these

considerations which was the subject of joint work of Winston Heap, the author,

and Trevor Wooley in [42]. Independently, this latter problem had been previously

investigated by Bourgain, Garaev, Konyagin, and Shparlinski [12] in a different

context; our results are essentially equivalent, and the proofs very similar.

1.0.1 Notation

We will use the standard asymptotic notations ≪,≫,≍,∼, O(·), o(·) as an ana-

lytic number theorist would without further comment. If the implicit constant or

the rate of convergence may depend on some parameters, we may specify these

parameters using subscripts. Thus, A ≪δ B means that A ⩽ CδB for some Cδ

which may depend on δ but is uniform in the other parameters.

We also adopt the ϵ-notation: each occurence of ϵ represents a sufficiently small
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positive real number which may vary from occurrence to occurrence, potentially

even in the same line.

Finally, we collect here some notation for the reader’s convenience – these will

be reiterated when they are first used:

� We use the analytic number theorist’s shorthand e(t) := e2πit for additive

characters.

� If P is a predicate, then 1P is the indicator of the predicate, i.e.,

1P =

1 if P is true,

0 otherwise.

� Unless stated otherwise, χ and ν always represent Dirichlet characters mod-

ulo q, and sums of the shape ∑
χ

,
∑
χ,ν

,

are taken over all such Dirichlet characters.

� dk(n) represents the k-fold divisor function, i.e., the coefficient of n−s in the

Dirichlet series of ζ(s)k.

� G(k) is the Barnes G-function.

� The bolded letter ℓ represents a function on the set of Dirichlet characters

mod q, D(q) taking positive integer values. The integer ℓ(χ) will be denoted

as ℓχ. Furthermore, we define

|ℓ| =
∑
χ

ℓχ, λ(ℓ) =
∑
χ

ℓ2χ, Lℓ(s) =
∏
χ

L(s, χ)ℓχ .

� We use dℓ(n) for the coefficient of n−s in the Dirichlet series for Lℓ(s).
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� GRH(q) denotes the statement that the Generalized Riemann Hypothesis

holds for L(s, χ) for every character χ modulo q.

� Sp(q, k) denotes the statement that the mean-squares of Lℓ(s) on the critical

line for all |ℓ| = k satisfy Conjecture 2.1.2 and Conjecture 2.1.4.

1.1 Historical remarks and functional equation

According to Davenport [23, Chapter 9], ζ(s, α) was first introduced by Adolf

Hurwitz in 1882 as part of his proof of the functional equation for quadratic

Dirichlet L-functions. While in many modern accounts, it is typical to prove the

functional equation for L(s, χ) by using the Poisson summation formula twisted

by χ (or equivalently, by using the modularity of the theta function associated

with χ), Hurwitz’s original proof proceeded via the “functional equation” of the

Hurwitz zeta function. Hurwitz’s idea applies also to complex characters, but, as

Davenport mentions, he was interested primarily in the theory of quadratic forms,

and hence did not treat higher order characters. The proof proceeds by inverting

(1.1) to get that

L(s, χ) = q−s
∑
1⩽a⩽q
(a,q)=1

χ(a)ζ(s, a
q
),

and then applying the functional equation for ζ(s, a
q
).

To state the functional equation for ζ(s, α), one needs to introduce the addi-

tively twisted zeta function

P (s, α) =
∑
n⩾1

e(nα)

ns
,

defined, for α ∈ R, initially in the region of absolute convergence ℜ(s) > 1, and

then extended to s ∈ C by analytic continuation except for a possible pole9 at

9which occurs if and only if α ∈ Z
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s = 1. Here and throughout, e(t) = e2πit. This function is sometimes called

the periodic zeta function or the periodized zeta function in the literature. The

functional equation then states,

ζ(1 − s, α) =
Γ(s)

(2π)s
(
e−πis/2P (s, α) + eπis/2P (s,−α)

)
, (1.5)

where Γ(s) is the gamma function. A grouchy reader may object that since this

identity does not relate the values of ζ(s, α) to itself, it should not be called a

functional equation. This hypothetical reader may rest assured that (1.5) is a

special case of a genuine functional equation for the Lerch zeta function (see, for

example, [5] or [59, Chapter 2]).

An accessible account of a proof of the functional equation of the Hurwitz

zeta function in the form (1.5) may be found in [56]. A proof along classical

lines may be found in [6, §12.7]; Apostol calls it “Hurwitz’s formula”10, and uses

it, presumably following Hurwitz, to prove the functional equations of ζ(s) and

L(s, χ).

Since ζ(s) = ζ(s, 1) = P (s,±1), setting α = 1 in (1.5) yields

ζ(1 − s) =
Γ(s) cos(πs

2
)

2s−1πs
ζ(s),

which is a rearrangement of the usual functional equation of ζ(s).

As a final remark to close out this section, note that when s is high up on the

critical line, (1.5) gives

ζ(1
2

+ it, α) = X (1
2

+ it)P (1
2
− it,−α)(1 + o(1)),

where X is the usual χ-factor in the functional equation ζ(s) = X (s)ζ(1 − s).

This is because of the rapid decay of the exponential factor in e−πis/2P (s, α) when

ℑ(s) → −∞. This suggests that, perhaps, ζ(s, α) and P (s,−α) are approximately

dual objects, similar to the duality between L(s, χ) and L(s, χ).

10possibly because he wants to reserve the phrase “functional equation of the Hurwitz zeta

function” for [6, Theorem 12.8]
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1.2 Moments of the Riemann zeta function

To put our discussion of the moments of the Hurwitz zeta function in the context

of the literature, it behooves us to discuss the rich history of moments (or mean-

values) of ζ(s) and other L-functions from arithmetic.

The moments of the Riemann zeta function are defined by

Mk(T ) =

∫ 2T

T

∣∣ζ (1
2

+ it
)∣∣2k dt, (1.6)

and are a classical topic of consideration – they were first considered by Hardy

and Littlewood in the early 1900s. The reader is invited to peruse [81, Chapter

V] for an account of the classical topics in this theory.

Perhaps the biggest reason for the interest in these problems is the connection

to the Lindelöf hypothesis; one has that

Mk(T ) ≪k,ϵ T
1+ϵ for every k ∈ N ⇐⇒ ζ(1

2
+ it) ≪ϵ t

ϵ,

where the upper bounds are respectively as T, t → ∞. The statement ζ(1
2

+ it) ≪

tϵ is the well-known Lindelöf hypothesis, which follows from the Riemann hypoth-

esis11 but is not known unconditionally; the Lindelöf hypothesis has implications

for zero-density estimates, which themselves have implications for gaps between

primes – see, for example, [51, §§1.9, 12.5] for an involved discussion of these

matters.

The following conjecture is widely believed:

Conjecture 1.2.1 (folklore). Suppose k ⩾ 0 is a fixed real number, and T → ∞,

then

Mk(T ) ∼ ckT (log T )k
2

,

for some fixed positive constant ck depending only on k.

11henceforth abbreviated as RH
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This conjecture is trivial for k = 0, was proved by Hardy and Littlewood [33]

for k = 1, was proved by Ingham [48] for k = 2, and is wide open in all other

cases.

Despite the history and intractability of the problem, very precise conjectures

for the exact value of ck exist. On the basis of number theoretic calculations,

Conrey and Ghosh [21] conjectured the value of ck for k = 3 and by a different (but

still number theoretic) method, Conrey and Gonek [22] conjectured the value of ck

for k = 3, 4. Finally, using a heuristic modeling ζ(s) by characteristic polynomials

of random matrices from the circular unitary ensemble, Keating and Snaith [55]

conjectured the value of ck for all k > 0, agreeing with the conjectures from [21]

and [22].

The method of Conrey and Gonek mentioned above depends on conjectures

about the additive divisor problem, namely, the question of getting asymptotics

for ∑
n⩽X

dk(n)dk(n + r),

with some uniformity in r. Here, k is a fixed integer and dk(n) is the coefficient

of ζ(s)k. The additive divisor problem is trivial when k = 1, and tractable12

when k = 2 (see [64] and references therein). For k ⩾ 3, however, the problem is

currently out of reach. This is one explanation for why we know the low moments,

k = 1, 2, but do not know any higher moments with k ⩾ 3. The reader is referred

to [65] (respectively [66]) for a recent attempt at conditionally formalizing Conrey–

Gonek’s heuristic argument for k = 3 (respectively k = 4).

The analogy with random matrix theory has led to many fruitful conjectures

for moments of L-functions; see, for example, [20] and the references therein.

12using a connection to Kloosterman sums due to Estermann [27], whereby tools from algebraic

geometry and the spectral theory of automorphic forms come into play – note however Ingham

[49] had asymptotics with log-savings already in the 1920s
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In §1.2.1, we review some of the connections between L-functions and random

matrices.

A weaker, and hence theoretically more tractable version of Conjecture 1.2.1

is the estimate Mk(T ) ≍k T (log T )k
2
. By work of Ramachandra [70, 71, 72], and

Heath-Brown [45], the lower bound Mk(T ) ≫k T (log T )k
2

was known condition-

ally on the Riemann Hypothesis (RH) for k > 0, and by work of Radziwi l l and

Soundararajan [69], it was known unconditionally for all k ⩾ 1. Recent work of

Heap and Soundararajan [43] establishes the lower bound unconditionally for all

k > 0.

For the upper bound, Soundararajan [78] had shown on RH that Mk(T ) ≪k,ϵ

T (log T )k
2+ϵ for every ϵ > 0 and k > 0. Harper [34] removed the dependence on

ϵ, conditionally establishing the sharp upper bound for every k > 0. The upper

bound was known unconditionally for k = 1/n, n ∈ N due to Heath-Brown [45],

and for k = 1 + 1/n, n ∈ N due to Bettin, Chandee and Radziwi l l [8]. Recently,

Heap, Radziwi l l and Soundararajan [40] subsumed both of these results by proving

the upper bound unconditionally for 0 ⩽ k ⩽ 2.

Many of the results discussed above generalize to other L-functions, both over

number fields and over function fields. We refer the reader to Soundararajan’s

ICM 2022 plenary talk [79] for a survey of questions in the value distribution of

L-functions, connections to random matrix theory, and recent progress (including

some outlined above).

1.2.1 Connections to random matrix theory

The esoteric connection between the theory of L-functions and the theory of ran-

dom matrices was discovered by coincidence in a tea-time discussion in the 70s

between Hugh Montgomery and Freeman Dyson, when Dyson observed that Mont-

gomery’s conjectural description [63] of the pair statistics of the zeroes of ζ(s)
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agrees with the corresponding statistics for the eigenvalues of random unitary

matrices.

While this connection is purely conjectural in the number field setting, there

is a mountain of evidence supporting it, both theoretical and numerical. The

numerical evidence is largely due to the work of Odlyzko [67], who computed

many high zeroes of ζ(s) to test what is now called the GUE hypothesis. The

theoretical evidence is even more convincing when one looks at L-functions beyond

ζ(s) – for example:

� Hejhal [46] computed the triple correlation statistics for the zeroes of ζ(s)

and showed they agreed with the GUE hypothesis. Rudnick and Sarnak [74]

generalized this and showed that, actually, all n-level correlation statistics

high up on the critical line for all principal automorphic L-functions univer-

sally agree with the GUE hypothesis, and are not sensitive to the coefficients

of the L-functions.

� Perhaps most convincing is the evidence from the function field setting.

Here, Katz and Sarnak [53] considered the statistics of low-lying zeroes in

families of L-functions and – going well-beyond the Riemann Hypothesis of

these L-functions13 – rigorously proved that these statistics are modeled by

those of random matrices from the classical compact groups14). On the basis

of this, they formulated what is now called the Katz–Sarnak philosophy;

namely, they conjectured that a similar phenomenon holds for families of

L-functions over number fields.

� Support for the Katz–Sarnak philosophy was provided by seminal work of

Iwaniec, Luo, and Sarnak [52] who computed many of these statistics in

13known due to work of Deligne
14The statistic for L-functions depends only on the compact group that arises; for this reason,

the matrix group associated to a family is called its “symmetry type”.
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automorphic families over number fields both unconditionally and under

several unproved hypotheses, showing that they agree with the philosophy.

We refrain from further explanations of the above results as that would lead

us far afield from our goal. We remark, however, that for a fixed L-function, high

up in the critical strip one universally expects GUE behaviour – the zeroes of the

L-function are modeled by eigenvalues of random unitary matrices. This will be

relevant in §2.5.

All the connections noted above are about zeroes of L-functions. Since the

eigenvalues of a matrix are zeroes of its characteristic polynomial, one may wonder

if the correspondence goes deeper: perhaps, L-functions correspond to character-

istic polynomials of random matrices. This idea led Keating and Snaith to the

following refinement of Conjecture 1.2.1.

Conjecture 1.2.2 (Keating–Snaith [55]). For fixed k ∈ C with ℜ(k) > −1/2,

Mk(T ) ∼ a(k)f(k)T (log T )k
2

,

where

a(k) =
∏
p

{(
1 − 1

p

)k2 ∞∑
m=0

dk(pm)2

pm

}
, (1.7)

f(k) =
G2(k + 1)

G(2k + 1)
. (1.8)

Here and throughout, dk is the k-fold divisor function15 and G is the Barnes G-

function.

To explain the key insight of Keating and Snaith, namely, that

ck = a(k)f(k),

15i.e., the coefficient of n−s in the Dirichlet series of ζ(s)k
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with a(k) as in (1.7) and f(k) as in (1.8), it is illuminating to recall the backdrop

in which they made this conjecture. Conrey and Ghosh [21] were the first to refine

the folkloric Conjecture 1.2.1, by suggesting that when k is an integer, then

ck =
a(k)g(k)

k2!
.

where a(k) is as in (1.7), which they called the “arithmetic factor” and g(k) is as

an integer, which they called the “geometric factor”16. It is not hard to guess that

an Euler product like a(k) must occur17, so there was some mystery behind the

provenance and nature of g(k). In this framework, Hardy and Littlewood’s result

[33] proves g(1) = 1, while Ingham’s result [48] proves g(2) = 2. Additionally,

Conrey–Ghosh conjectured that g(3) = 42. Then, using the divisor correlation

heuristic described earlier, Conrey–Gonek [22] conjectured that g(4) = 24024.

Conrey–Gonek’s work recovered previously known values for k ∈ {1, 2, 3}, but

failed for k > 4 – in fact, it gave a negative value of g(5)!

Keating and Snaith’s insight was the following. First, since the Gaussian uni-

tary ensemble (GUE) and the circular unitary ensemble (CUE) have identical

eigenvalue distributions in the large dimension limit, one works with CUE in-

stead of GUE. If U is an N × N unitary matrix with eigenvalues {eiθn}Nn=1, the

characteristic polynomial, Z(U, θ) is defined by

Z(U, θ) =
N∏

n=1

(1 − ei(θn−θ)).

Then, they proved that

E[|Z(U, θ)|2k] ∼ f(k)Nk2 ,

16In the recent literature, it is common to call this the “random matrix” factor instead.

However, as we shall presently explain, one should probably call ak the “prime contribution”

and gk the “zeroes contribution”.
17It arises from a pole when using Perron’s formula to calculate the contributions of the

diagonal terms after an application of the approximate functional equation.
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when N → ∞, where here f(k) is as in (1.8), and the expectation is taken by

sampling U from the unitary group U(N) uniformly with respect to the Haar

measure. Now, observe that eigenvalues of U have mean spacing 2π/N while

zeroes of ζ(s) have mean spacing 2π/ log T . Thus, if we take N = log T , one

might expect Z(U, θ) to be a good model for ζ(s), and hence that

E[|Z(U, θ)|2k] ≃ Mk(T )

T
,

in some sense. They observed that

f(k) =
g(k)

k2!

for the known values (k = 1, 2) and the conjectured values (k = 3, 4) of g(k)

and hence were led to guess that that the above18 continues for all k ∈ C with

ℜ(k) > −1/2, which is their conjecture above.

This spectacular piece of guesswork is remarkably effective – Keating and

Snaith were able to extend this line of thought also to moments in families of

L-functions [54].

A skeptical reader may, however, ask: where is the constant ak coming from?

Its inclusion in Conjecture 1.2.2 appears ad-hoc; it does not seem to be the case

that primes are involved at all. Since ζ(s) is, at its core, an arithmetic object, it

is unclear how to reconcile the arithmetic of ζ(s) with the random matrix theory

analogy.

This discrepancy was explained by the hybrid formula of Gonek, Hughes, and

Keating [31]. Recall that,

ζ(s) =
∏
p

(
1 − 1

ps

)−1

=
eα+βs

s(s− 1)Γ( s
2
)

∏
ρ

(
1 − s

ρ

)
es/ρ,

where α and β are constants, p runs over all primes, and ρ runs over all non-trivial

zeroes of ζ(s). The former representation is the Euler product, while the latter

18with k2! replaced by Γ(k2 + 1)
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is the Hadamard product19 of ζ(s). Gonek, Hughes, and Keating formalulated a

hybrid Euler-Hadamard product involving both the primes and the zeroes. This

formula is pretty technical, so with the aim of simplifying the exposition, we state

and use it here informally; the reader interested in the gory details may refer to

Chapter 2, or to the original article [31]. With this in mind, the formula states

ζ(s) ≃ PX(s)ZX(s)

where X is a parameter that grows as t = ℑ(s) grows in a vertical strip, but

which can be chosen with a fair amount of flexibility. Here, PX is essentially a

partial Euler product using only primes up to X, while ZX is essentially a partial

Hadamard product using zeroes near t, viz., |ρ − t| ≪ 1
logX

. Note that there is

an uncertainty principle at play here – to capture the true behaviour of ζ(s), one

has to pay the price somewhere. If we choose to use fewer primes in the Euler

product, we need more zeroes in the Hadamard product, and conversely.

With this formula in hand, Gonek, Hughes, and Keating conjectured20, that as

X,T → ∞ with X growing sufficient slowly with respect to T , PX(s) and ZX(s)

behave like independent random variables, and hence the moments factorize,

1

T

∫ 2T

T

|ζ(1
2

+ it)|2k dt ∼ 1

T

∫ 2T

T

|PX(1
2

+ it)|2k dt× 1

T

∫ 2T

T

|ZX(1
2

+ it)|2k dt.

This is called the Gonek–Hughes–Keating splitting conjecture.

The moments of PX can be computed exactly using standard arguments; it

turns out to be

1

T

∫ 2T

T

|PX(1
2

+ it)|2k dt ∼ a(k)(eγ logX)k
2

.

On the other hand, we do not know how to compute the moments of ZX . However,

following Keating and Snaith, one can model ZX by a corresponding object in-

volving eigenvalues of a random unitary matrix with dimension N = log T . Upon

19Strictly speaking, it is the Hadamard product of the completed zeta function, 1
2s(s −

1)π−s/2Γ(s/2)ζ(s), which is entire of order 1.
20on the basis of a separation of scales
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doing so, and computing the corresponding moment in the random matrix theory

setting, Gonek, Hughes, and Keating conjectured that

1

T

∫ 2T

T

|ZX(1
2

+ it)|2k dt ∼ f(k)

(
log T

eγ logX

)k2

.

But now, the previous three display equations combine to give

1

T

∫ 2T

T

|ζ(1
2

+ it)|2k dt ∼ a(k)f(k)(log T )k
2

,

recovering the Keating and Snaith conjecture! It seems surprising that the scale

parameter X cancels exactly in the formula. This approach naturally includes the

contributions from primes21, providing further evidence of the correctness of the

Keating–Snaith conjectures, and it is the approach we shall follow in Chapter 2

when we consider moments of products of Dirichlet L-functions.

21and, as mentioned earlier, justifies our suggestion to call gk the “zeroes contribution”
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2 Moments of products of

Dirichlet L-functions

2.1 Introduction

Due to (1.1), moments of products of Dirichlet L-functions (to the same modulus,

q) arise naturally when one seeks to study Mk(T ;α) with α ∈ Q. To explain this

connection, we fix some notation that will be used throughout this chapter and

its sequel. We assume α = a/q with1 q ⩾ 3, (a, q) = 1, and 1 ⩽ a ⩽ q. Dirichlet

characters will be denoted χ or ν, and will be modulo q unless noted otherwise.

We will use bolded, lower case (Greek or Latin) letters such as ℓ for tuples of

natural numbers indexed by characters modulo q. Thus, if ℓ is such a tuple, we

think of it as a function ℓ : D(q) → N where D(q) is the set of Dirichlet characters

modulo q. We denote ℓ(χ) as ℓχ. Further, we define,

|ℓ| =
∑
χ

ℓχ, λ(ℓ) =
∑
χ

ℓ2χ, Lℓ(s) =
∏
χ

L(s, χ)ℓχ .

Here, and later, sums and products over χ or ν run over D(q). If ℓ is clear from

context, we suppress it and denote λ(ℓ) simply as λ. Finally, we denote by dℓ(n)

the coefficient of n−s in the Dirichlet series expansion of Lℓ(s).

1We may assume q ⩾ 3, since ζ(s; 1) = ζ(s) and ζ(s, 1
2 ) = (2s − 1)ζ(s).
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Now, by raising (1.1) to the power 2k, and using the multinomial theorem

|ζ(s, α)|2k =

∣∣∣∣ qks

φ(q)k

∑
|ℓ|=k

(
k

ℓ

)∏
χ

{
χ(a)L(s, χ)

}ℓχ
∣∣∣∣2

=

∣∣∣∣ qks

φ(q)k

∑
|ℓ(1)|=k

|ℓ(2)|=k

(
k

ℓ

){∏
χ

χ(a)ℓχ
}
ℓ)Lℓ(s)

∣∣∣∣2

=
q2kσ

φ(q)2k

∑
|ℓ(1)|=k

|ℓ(2)|=k

(
k

ℓ(1)

)(
k

ℓ(2)

)
s(a; ℓ(1), ℓ(2))Lℓ(1)(s)Lℓ(2)(s),

(2.1)

where
(
k
ℓ

)
= k!/

∏
χ ℓχ! are multinomial coefficients, the sums runs over ℓ such

that |ℓ| =
∑

χ ℓχ = k, and s(a; ℓ(1), ℓ(2)) =
∏

χ χ(a)ℓ
(2)
χ −ℓ

(1)
χ . In particular, when

we integrate both sides from 1/2 + iT to 1/2 + i2T , the terms in this sum whose

phase oscillates will probably not contribute to the main term. The terms that

do not have oscillations correspond to the diagonal terms ℓ(1) = ℓ(2) where the

phases of each term in the product cancel out, yielding a positive real number.

Thus, heuristically,

Mk(T ;α) =

∫ 2T

T

∣∣ζ (1
2

+ it, α
)∣∣2k dt

≈ qk

φ(q)2k

∑
|ℓ|=k

(
k

ℓ

)2 ∫ 2T

T

∣∣Lℓ
(
1
2

+ it
)∣∣2 dt.

(2.2)

whence, the problem of estimating Mk(T ;α) naturally reduces to studying the

mean-square of Lℓ(s) along the critical line.

The mean-square of Lℓ(s) has been considered in the literature before. The

principal reason for interest in such products is the connection to Dedekind zeta

functions ζK(s) for Abelian number fields K. For example, if

ℓ = k1,

or, in other words, ℓχ = k for every χ, then

Lℓ(s) = ζK(s)k,
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where K = Q(ϵq) is the qth cylotomic field (i.e., ϵq is a primitive qth root of

unity), and, hence, we find that the mean-square of Lℓ(s) is the 2kth moment of

ζK(s). On the other hand, if K = Q(
√
d), D is the discriminant of this field, and

χd(n) = (D|n) where (·|·) is the Kronecker symbol, then one finds that if we set

ℓχ =

k if χ = χ0, χd

0 otherwise,

then, Lℓ(s) is essentially ζK(s)k (after correcting the local factors at primes p

dividing D). This is because,

ζK(s) = ζ(s)L(s, χd),

which is the same as L(s, χ0)L(s, χd) up to the local factors corresponding to p

dividing D.

We would like to highlight the following previous works on moments of prod-

ucts of L-functions on the critical line:

� Heap [38]: in which he studies the Dedekind zeta function ζK(s) of Galois

number fields using the Gonek–Hughes–Keating approach, and modifies the

recipe of [20] to give a conjecture for moments of products of L-functions in

the Selberg class satisfying Selberg’s orthonormality conjecture.

� Milinovich and Turnage-Butterbaugh [61]: in which they prove almost2

sharp upper bounds for moments of products of automorphic L-functions un-

der the generalized Riemann hypothesis (GRH) for the relevant L-functions

by adapting the argument of [78].

� Topacogullari [82]: in which he proves asymptotic formulas with the best-

known error terms for the mean-square of L(s, χ)L(s, ν) where χ and ν are

primitive characters to possibly different moduli, including the case where

ν = χ.

2up to a factor of (log T )ϵ, which can likely be removed by using ideas of Harper [34]
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The connection to our work is hopefully evident – for example, Dirichlet L-

functions are both automorphic L-functions of degree 1 and examples of the Sel-

berg class known to satisfy the orthonormality conjecture. The reader is referred

to the introduction to these articles for a more detailed account of the literature

on moments of products. In §2.2, we collect the statements, as lemmata, of some

of these results that we will need.

To study moments of products of Dirichlet L-functions, we will use a hybrid

Euler-Hadamard product, a tool introduced originally by Gonek, Hughes and

Keating [31] in the context of the Riemann zeta function, and discussed briefly in

§1.2.1. Specifically, we will need the following version for Dirichlet L-functions in

the t-aspect:

Theorem 2.1.1. Let s = σ+it with σ ⩾ 0 and |t| ⩾ 2, let X ⩾ 2 be a real param-

eter, and let K be any fixed positive integer. Further, let f(x) be a non-negative

C∞-function of mass one supported on [0, 1], and set u(x) = Xf(X log(x/e)+1)/x

so that u is a non-negative C∞-function of mass one supported on [e1−1/X , e]. Set

U(z) =

∫ ∞

0

u(x)E1(z log x) dx,

where E1(z) =
∫∞
z

e−ww−1 dw is the exponential integral.

Let q be a fixed positive integer, and χ be a Dirichlet character modulo q with

conductor q∗(χ). Further, suppose that χ is induced by the primitive character χ∗

modulo q∗(χ). Then,

L(s, χ) = PX(s, χ)ZX(s, χ)

(
1 + O

( logX

Xσ

)
+ OK,f

( XK+2

(|s| logX)K

))
,

where

PX(s, χ) =

{∏
p|q

(
1 − χ∗(p)

ps

)}
exp

(∑
n⩽X

χ∗(n)Λ(n)

ns log n

)
,

and

ZX(s, χ) = exp

(
−

∑
ρ

0⩽ℜρ⩽1
L(ρ,χ∗)=0

U((s0 − ρ) logX)

)
.
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The implied constants are uniform in all parameters including q, unless indi-

cated otherwise.

Such a hybrid Euler-Hadamard product was proved by Bui and Keating [16]

in their study of moments in the q-aspect of Dirichlet L-functions at the central

point s = 1/2 (see [16, Remark 1]). Similar hybrid Euler-Hadamard products have

been used in the literature for studying moments in many other contexts such as

for for orthogonal and symplectic families of L-functions [17]; for ζ ′(s) [15]; for

the Dedekind zeta function ζK(s) of a Galois extension K of Q [38]; for quadratic

Dirichlet L-functions over function fields [14], [4]; for normalized symmetric square

L-functions associated with SL2(Z) eigenforms [25]; and for quadratic Dirichlet

L-functions over function fields associated to irreducible polynomials [3].

With P (s, χ) and Z(s, χ) as in Theorem 2.1.1, we define

Pℓ
X(s) =

∏
χ

PX(s, χ)ℓχ , Zℓ
X(s) =

∏
χ

ZX(s, χ)ℓχ .

We can view Lℓ(s) as an L-function of degree |ℓ|, Pℓ
X(s) as an approximation

to its Euler product, and Zℓ
X(s) as an approximation to its Hadamard product.

Roughly, Theorem 2.1.1 implies that Lℓ(s) ≈ Pℓ
X(s)Zℓ

X(s).

As is usually the case with hybrid Euler-Hadamard products, X mediates

between the primes and zeroes; if we want to take fewer primes in the Euler

product we must take more zeroes in the Hadamard product and vice-versa.

For X growing relatively slowly with T , we expect the two terms in the decom-

position Lℓ(s) ≈ Pℓ
X(s)Zℓ

X(s) to behave like independent random variables due

to a separation of scales. This is analogous to the splitting conjecture of Gonek,

Hughes and Keating [31, Conjecture 2]. Concretely, we have:

Conjecture 2.1.2 (Splitting). Let X,T → ∞ with X ≪ϵ (log T )2−ϵ. Then, for

any tuple of nonnegative integers ℓ indexed by characters modulo q, we have for
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s = 1/2 + it,

1

T

∫ 2T

T

∣∣Lℓ(s)
∣∣2 dt ∼

(
1

T

∫ 2T

T

∣∣Pℓ
X(s)

∣∣2 dt

)
×
(

1

T

∫ 2T

T

∣∣Zℓ
X(s)

∣∣2 dt

)
.

On [31, p. 511], it is suggested that this splitting conjecture holds for a much

wider range of X and T with X = o(T ). Recently, Heap [39] has justified this

suggestion. He proved on RH that the splitting conjecture for ζ(s) holds for

every k > 0 and a much wider range of X provided one requires only an order

of magnitude result, instead of an asymptotic. He also established the splitting

conjecture for k = 1 and k = 2 for wider ranges of X both with and without RH.

The mean-square of Pℓ
X(s) can be computed exactly.

Theorem 2.1.3. Let k ⩾ 0 be a fixed integer and ϵ > 0 be fixed. Let ℓ be a tuple

of nonnegative integers indexed by characters modulo q such that |ℓ| =
∑

χ ℓχ = k.

Finally, suppose that q2 < X ≪ϵ (log T )2−ϵ. Then for s = 1/2 + it,

1

T

∫ 2T

T

|Pℓ
X(s)|2 dt = b(ℓ)FX(ℓ)

(
1 + Oq,k,ϵ

(
1

logX

))
where b(ℓ) and FX(ℓ) are given by

b(ℓ) =
∏
p∤q

{(
1 − 1

p

)|dℓ(p)|2 ∞∑
m=0

|dℓ(pm)|2

pm

}
, (2.3)

FX(ℓ) = (eγ logX)λ
∏
p

(
1 − 1

p

)λ−|dℓ(p)|2

, (2.4)

where γ is the Euler-Mascheroni constant, dℓ(n) is the coefficient of n−s in the

Dirichlet series for Lℓ(s), and λ =
∑

χ ℓ
2
χ.

One could prove a similar result uniformly in c on any vertical line ℜs = σ

with 1 > σ ⩾ c ⩾ 1/2 given X ≪ϵ (log T )1/(1−c+ϵ) , but we choose not to do so

for conciseness. Note that the product over p in (2.4) is conditionally convergent

but not absolutely convergent.
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For the mean-square of Zℓ
X(s), we use random matrix theory to model each

L-function appearing in the product by random unitary matrices. One expects

that the matrices representing distinct L-functions behave independently as in

[38, Conjecture 2]. This leads to:

Conjecture 2.1.4. Suppose that X,T → ∞ with X ≪ϵ (log T )2−ϵ. Then, for

any tuple ℓ of nonnegative integers indexed by characters modulo q, we have for

s = 1/2 + it,

1

T

∫ 2T

T

|Zℓ
X(s)|2 dt ∼

∏
χ

[
G(ℓχ + 1)2

G(2ℓχ + 1)

(
log q∗(χ)T

eγ logX

)ℓ2χ
]
,

where G(·) is the Barnes G-function, and q∗(χ) is the conductor of χ.

It is clear that one can use Conjectures 2.1.2 and 2.1.4 together with Theo-

rem 2.1.3 to get a conjectural asymptotic for
∫ 2T

T
|Lℓ(1/2 + it)|2 dt. Precisely, we

get,

Theorem 2.1.5. If Conjecture 2.1.2 and Conjecture 2.1.4 are true for a tuple of

nonnegative integers ℓ indexed by characters modulo q satisfying |ℓ| = k, then we

have for s = 1/2 + it,

1

T

∫ 2T

T

|Lℓ(s)|2 dt = (cℓ(q) + oq,k(1))

{∏
χ

(log q∗(χ)T )ℓ
2
χ

}
,

where cℓ(q) is given by

∏
p

{(
1 − 1

p

)λ ∞∑
m=0

|dℓ(pm)|2

pm

}∏
χ

G(ℓχ + 1)2

G(2ℓχ + 1)
.

Here λ, and G(·) and q∗(χ) are the same as above.

Note that for a fixed q, the above says that the mean-square of a product of

Dirichlet L-functions grows as ≍k,q T (log T )λ. This is known for |ℓ| ⩽ 2, and we

shall show that in these cases our predicted constant matches up.
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Due to the conditional hypotheses, the above theorem is really a conjecture.

We note here that Heap made a similar conjecture about moments of products of

L-functions from the Selberg class (see [38, §6]) using the recipe of Conrey, Farmer,

Keating, Rubinstein and Snaith [20]. Specializing to Dirichlet L-functions, one

can recover the above conjecture.

He also discussed how such conjectures could be reproduced by using hybrid

Euler-Hadamard products under appropriate hypotheses. However, since he has

not worked out the details of this approach in this specific context, we do so here

for completeness.

Since the current levels of technology can handle second moments and fourth

moments of ζ(s) really well, it is natural to hope that we can prove Conjec-

tures 2.1.2 and 2.1.4 for |ℓ| ⩽ 2. We define the Kronecker delta δχ by

δχν =

1 if χ = ν

0 if χ ̸= ν.

Then, we can prove:

Theorem 2.1.6. Conjecture 2.1.2 and Conjecture 2.1.4 hold unconditionally for

|ℓ| = 1. In particular |ℓ| = 1 if and only if ℓ = δχ for some character χ, in which

case we have that for s = 1/2 + it, and X,T → ∞ with X ≪ϵ (log T )2−ϵ,

1

T

∫ 2T

T

|L(s, χ)|2 dt ∼
(

1

T

∫ 2T

T

|PX(s, χ)|2 dt

)
×
(

1

T

∫ 2T

T

|ZX(s, χ)|2 dt

)
,

and
1

T

∫ 2T

T

|ZX (s, χ)|2 dt ∼ log q∗(χ)T

eγ logX
. (2.5)

The above theorem can almost certainly be extended to the case |ℓ| = 2.

This corresponds to ℓ = δχ + δν , and Lℓ(s) = L(s, χ)L(s, ν) with χ and ν not

necessarily distinct characters modulo q.
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We note first that some of these have already been proved. The case ℓ = 2δχ0

where χ0 is the principal character modulo q was essentially proved by Gonek,

Hughes, and Keating [31, Theorem 3]. More generally, the case ℓ = δχ0 + δχ

where χ is a (not necessarily primitive) quadratic Dirichlet character modulo q

was essentially proved by Heap [38, Theorem 3]. To see this, note from (2.9) that

ZX(s, χ) depends only on the primitive character χ∗ modulo q∗(χ) that induces

χ. In particular, one can replace L(s, χ0)
2 with ζ(s)2 and L(s, χ0)L(s, χ) with

ζ(s)L(s, χ∗) = ζK(s) where K is a quadratic extension of Q and ζK(s) is its

Dedekind zeta function. Analogues of splitting for these products is precisely

what was proven in these papers.

By following both these arguments, one should be able to extend to the general

case ℓ = δχ + δν . To do so, one would need a moment result for the product of

two primitive Dirichlet L-functions and a short Dirichlet polynomial, generalizing

that of [36]. That is, we would need an asymptotic for

∫ 2T

T

∣∣∣∣∣∣L(s, χ)L(s, ν)
∑
n⩽T θ

an
ns

∣∣∣∣∣∣
2

dt, (2.6)

where χ and ν are any primitive characters with conductor dividing q, and some

0 < θ < 1 sufficiently large. Such asymptotics exist in the special cases of ζ(s)2

[47, 7] and ζ(s)L(s, χ) [36], for any character χ. Proving (2.6) and the splitting

conjecture for ℓ = δχ + δν for more general χ, ν by using the methods of [38], [36]

and [31] as outlined above should be possible but long and technical. Thus, we

do not pursue this here.

In several results, we must assume one of the following two hypotheses:

� The Generalized Riemann Hypothesis holds for L(s, χ) for every character

χ modulo q. We denote this by GRH(q).

� The mean squares of Lℓ(s) on the critical line for all |ℓ| = k satisfy Con-

jecture 2.1.2 and Conjecture 2.1.4. We denote this by Sp(q, k), for splitting
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conjecture.

We introduce the above shorthand for convenience, as many results will hold under

either hypothesis.

2.2 Previous results

In this section, we collect some previous results from the literature as lemmata.

We will need Mertens’ theorem for arithmetic progressions:

Lemma 2.2.1. Let κ be a fixed real number, and (c, q) = 1. Then,

∏
p⩽X

p≡c (mod q)

(
1 − 1

p

)−κ

= Hq
c (κ)

(
1 + Oq,κ

(
1

logX

))

where,

Hq
c (κ) =

{
eγ logX

∏
p

(
1 − 1

p

)1−δq(p,c)φ(q)
} κ

φ(q)

.

Here γ is the Euler-Mascheroni constant and δq(x, y) is the Kronecker delta in

Z/qZ,

δq(x, y) =

1 if x ≡ y (mod q),

0 otherwise.

Proof. Clearly the result for general κ ∈ R follows from the case κ = 1 by expo-

nentiating. The latter is precisely Merten’s theorem for arithmetic progressions

which was proved by Williams [85]. The expression for the constant Hq
c (1), how-

ever, is due to Languasco and Zaccagnini [58, §6] who also improved the error

term to one uniform in q. The weaker form suffices for our purposes.
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The following lemma is a corollary of a result of Milinovich and Turnage-

Butterbaugh [61]:

Lemma 2.2.2. Suppose that either GRH(q) or Sp(q, k) holds, and that ℓ is tuple

of nonnegative integers indexed by the characters modulo q satisfying |ℓ| = k.

Then, for λ(ℓ) =
∑

χ ℓ
2
χ and any ϵ > 0,∫ 2T

T

∣∣Lℓ
(
1
2

+ it
)∣∣2 dt ≪q,k,ϵ T (log T )λ+ϵ.

In particular, if ℓ ̸= kδχ for all characters χ modulo q, then∫ 2T

T

∣∣Lℓ
(
1
2

+ it
)∣∣2 dt ≪q,k,ϵ T (log T )k

2−1+ϵ,

Proof. First, suppose that Sp(q, k) holds. Then, the first inequality is trivally true

due to Theorem 2.1.53. Alternatively, suppose that GRH(q) holds. Then, the first

inequality follows by applying [61, Theorem 1.1] in the specific case where all the

L-functions involved are Dirichlet L-functions.

Now note that under the constraints ℓχ ⩾ 0 and
∑

χ ℓχ = k, we have that

λ =
∑

χ ℓ
2
χ ⩽ k2 with equality if and only if the entire weight of ℓ is concentrated

on a single character. In particular, if ℓ ̸= kδχ for all characters χ, then λ(ℓ) < k2

and so, λ(ℓ) ⩽ k2 − 1. Thus, the second inequality in the lemma follows from the

first.

We make use of a result of Topacogullari [82], where he computes the full

asymptotic formula for the fourth moments of L(s, χ) and the mean-square of

L(s, χ)L(s, ν) with a power saving in the error term, and an explicit dependence

on the conductors. We need only need a weak version of his results, stated below.

Lemma 2.2.3. Let χ be a Dirichlet character modulo q. Then, for s = 1/2 + it,∫ 2T

T

|L (s, χ)|4 dt = C(χ)T (log T )4 + Oq(T (log T )3)

3This is not circular; Lemma 2.2.2 is not used in the proof of Theorem 2.1.5.
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where C(χ) is given by

C(χ) =
1

2π2

φ(q)2

q2

∏
p|q

(
1 − 2

p + 1

)
.

Proof. This is an immediate corollary of [82, Theorem 1.1].

Lemma 2.2.4. Let χ and ν be distinct Dirichlet characters modulo q. Then, for

s = 1/2 + it,∫ 2T

T

|L (s, χ)L (s, ν)|2 dt = D(χ, ν)T (log T )2 + Oq(T log T )

where D(χ, ν) is given by

D(χ, ν) =
6

π2
|L(1, χν)|2φ(q)

q

∏
p|q

(
1 − 1

p + 1

)
.

Proof. This is a corollary of [82, Theorem 1.3], by setting χ1 = χ, χ2 = ν, q1 =

q2 = q, noting that this implies q⋆1 = q⋆2 = 1 and noting that φ(q2) = qφ(q).

We need a second moment asymptotic for a Dirichlet L-function twisted by a

short Dirichlet polynomial. We use one proved by Wu [88]:

Lemma 2.2.5. Let χ be a primitive Dirichlet character modulo q with log q =

o(log T ), let θ > 0 be a parameter, and let b(n) be an arithmetic function satisfying

b(n) ≪ϵ n
ϵ for all ϵ > 0. Further, let

Bθ(s, χ) =
∑
n⩽T θ

χ(n)b(n)

ns
,

Mθ(T ;χ, b) =
1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)
Bθ

(
1
2

+ it, χ
)∣∣2 dt,

and

M ′
θ(T ;χ, b) =

φ(q)

q

∑
m,n⩽T θ

(mn,q)=1

b(m)b(n)

[m,n]

log
qT (m,n)2

2πmn
+ C +

∑
p|q

log p

p− 1

 ,
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with C = 2γ − 1 + 2 log 2. Then,

Mθ(T ;χ, b) = M ′
θ(T ;χ, b) + O(T−εθ)

where the parameter εθ depends on θ, and εθ > 0 when θ < 17/33.

Proof. This is contained in [88, Theorem 1.1].

We also have the following, which is immediate from [16, Lemma 3]:

Lemma 2.2.6. Let ℓ be a tuple of nonnegative integers indexed by characters

modulo q such that |ℓ| =
∑

χ ℓχ = k, let

P ∗
X(s, χ) =

∏
p⩽X

(
1 − χ(p)

ps

)−1 ∏
√
X<p⩽X

(
1 +

χ(p)2

2p2s

)−1

,

and let

P∗ℓ
X (s) =

∏
χ

P ∗
X(s)ℓχ .

Then, uniformly for σ ⩾ 1/2 and X > q2,

Pℓ
X(s) = P∗ℓ

X (s)

(
1 + Ok

(
1

logX

))
.

Proof. From [16, Lemma 3], we get that

PX(s, χ∗)ℓχ = P ∗
X(s, χ∗)ℓχ

(
1 + Oℓχ

(
1

logX

))
,

where χ∗ is the primitive character modulo q∗(χ) which induces χ. Since X > q2,

we see that p | q implies that p ⩽
√
X. Thus, by inspection,

P ∗
X(s, χ) = P ∗

X(s, χ∗)
∏
p|q

(
1 − χ∗(p)

ps

)
.

Putting the above two equalities together with (2.8), we get that

PX(s, χ)ℓχ = P ∗
X(s, χ)ℓχ

(
1 + Oℓχ

(
1

logX

))
.

The lemma follows by taking a product over characters χ modulo q.
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2.3 Proof of Theorem 2.1.1

The proof of Theorem 2.1.1 is very similar to [31, Theorem 1] and [16, Theorem

1] so we only provide a sketch of the details.

First, recall that if χ and χ∗ are as in the theorem, then

L(s, χ) = L(s, χ∗)
∏
p|q

p∤q∗(χ)

(
1 − χ∗(p)

ps

)
. (2.7)

Further, by inspection we see that if P (s, ·) and Z(s, ·) are as in the theorem, then

PX(s, χ) = PX(s, χ∗)
∏
p|q

p∤q∗(χ)

(
1 − χ∗(p)

ps

)
, (2.8)

ZX(s, χ) = ZX(s, χ∗). (2.9)

Clearly, (2.7),(2.8) and (2.9) show that we can assume without loss of generality

that χ is a primitive character modulo q.

Further, note that we can assume that χ is nonprincipal as, if χ is principal

and primitive, the associated L-function is ζ(s), for which the result was already

proved by Gonek, Keating and Hughes [31, Theorem 1].

Our starting point is

logL(s, χ) =
∞∑
n=2

Λ(n)

ns log n
v(elogn/ logX) −

∑
ρ

L(ρ,χ)=0

U((s− ρ) logX), (2.10)

which is essentially [16, Equation 8]. Here v and U are as in the theorem, ρ runs

over all zeroes of L(s, χ) including trivial ones, and this representation holds for

σ ⩾ 0, provided s is not a zero of L(s, χ).

Now, since u is supported on [e1−1/X , e] and is clearly normalized to have mass

1, we can apply the estimates from [31, pp. 515-516]. We thus have

∞∑
m=1

U((s + 2m) logX) ≪K,f
XK+1

(|s| logX)K
.
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Furthermore, by a similar argument, we also have

∞∑
m=1

U((s + 2m− 1) logX) ≪K,f
XK+1

(|s| logX)K
.

Now, since the trivial zeros of L(s, χ) are either all on negative even integers,

or on negative odd integers, upon inserting the above estimates into (2.10), we

see that

logL(s0, χ) =
∞∑
n=2

Λ(n)

ns0 log n
v(elogn/ logX)

−
∑
ρ

0⩽ℜρ⩽1
L(ρ,χ)=0

U((s0 − ρ) logX)

+ OK,f

(
XK+2

(|s0| logX)K

)
.

where the sum over ρ now runs only over the non-trivial zeroes of L(s, χ). Expo-

nentiating, we get

L(s, χ) = P̃X(s, χ)ZX(s, χ)

(
1 + OK,f

(
XK+2

(|s| logX)K

))
,

where

P̃X(s, χ) = exp

(∑
n⩽X

χ(n)Λ(n)

ns log n
v(elogn/ logX)

)
,

and ZX(s, χ) is as defined in the theorem.

It remains to replace P̃X(s, χ) by PX(s, χ) with a tolerable error and to show

that the restriction that L(s, χ) ̸= 0 can be removed. This is exactly analogous

to [31, pp. 516-517].

2.4 Proof of Theorem 2.1.3

We briefly discuss some notation for this section. Recall that dℓ(n) is the coefficient

of n−s in the Dirichlet series of Lℓ(s). dℓ(n) is essentially a divisor function
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‘twisted’ by the Dirichlet characters modulo q. We also use dk(n) for the true

divisor function, i.e., the coefficient of n−s in ζ(s)k. In particular, it is immediate

from writing dℓ(n) out as a convolution that |dℓ(n)| ⩽ dk(n) for every n ∈ N.

We will use the notation Sq(X) to denote the set of X-smooth (also known as

X-friable) numbers which are coprime to q. That is,

Sq(X) = {n ∈ N : p | n =⇒ p ⩽ X and p ∤ q}.

For the rest of this section, we will fix s = 1/2 + it. Now, we want to estimate∫ 2T

T

∣∣Pℓ
X(s)

∣∣2 dt assuming that q2 < X ≪ϵ (log T )2−ϵ. Clearly, by Lemma 2.2.6,

1

T

∫ 2T

T

|Pℓ
X(s)|2 dt =

(
1

T

∫ 2T

T

|P∗ℓ
X (s)|2 dt

)(
1 + Ok

(
1

logX

))
,

and so it suffices to compute
∫ 2T

T
|P∗ℓ

X (s)|2 dt.

From the definition of P∗ℓ
X (s) in Lemma 2.2.6, it follows that if

P∗ℓ
X (s) =

∞∑
n=1

βℓ(n)

ns
, (2.11)

then βℓ(n) is multiplicative and supported on Sq(X), |βℓ(n)| ⩽ d2k(n) for all

n, and finally for n ∈ Sq(
√
X) and p ∈ Sq(X), we have βℓ(n) = dℓ(n) and

βℓ(p) = dℓ(p).

We truncate the sum in (2.11) at T θ where θ > 0 will be chosen later. Thus,

P∗ℓ
X (s) =

∑
n∈Sq(X)

n⩽T θ

βℓ(n)

ns
+ O

( ∑
n∈Sq(X)

n>T θ

|βℓ(n)|
n1/2

)
.

Applying Rankin’s trick and the estimate |βℓ(n)| ⩽ d2k(n) to the error term, we

see that it is

≪ϵ

∑
n∈Sq(X)

n>T θ

( n

T θ

)ϵ |βℓ(n)|
n1/2

⩽ T−ϵθ
∑

n∈Sq(X)

d2k(n)

n1/2−ϵ

= T−ϵθ
∏
p⩽X
p∤q

(
1 − pϵ−1/2

)−2k
.
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Using log(1 − x)−1 = O(x), we see that the product on the right is

T−ϵθ exp

(
O

(
k
∑
p⩽X

pϵ−1/2

))
.

Applying the prime number theorem and integrating by parts, we see that

since X ≪ϵ (log T )2−ϵ, this is

≪ T−ϵθ exp

(
O

(
kX1/2+ϵ

(1/2 + ϵ) logX

))
≪ T−ϵθ exp

(
Oϵ

(
k log T

log log T

))
≪k,ϵ,θ T

−ϵθ/2.

Hence, we have

P∗ℓ
X (s) =

∑
n∈Sq(X)

n⩽T θ

βℓ(n)

ns
+ Ok,ϵ,θ(T

−ϵθ/2). (2.12)

Now, by the classical mean value theorem for Dirichlet polynomials, we have

that ∫ 2T

T

∣∣∣∣∣ ∑
n∈Sq(X)

n⩽T θ

βℓ(n)

n1/2+it

∣∣∣∣∣
2

dt = (T + O(T θ log T ))
∑

n∈Sq(X)

n⩽T θ

|βℓ(n)|2

n
.

Extending the sum on the right hand side to infinity introduces an error Ok,ϵ,θ(T
−ϵθ/2),

by the same argument as before. Thus, setting θ = 1/2, we see that

1

T

∫ 2T

T

∣∣∣∣∣ ∑
n∈Sq(X)

n⩽T 1/2

βℓ(n)

n1/2+it

∣∣∣∣∣
2

dt =
∑

n∈Sq(X)

|βℓ(n)|2

n
(1 + Ok,ϵ(T

−ϵ/4)) (2.13)

Using (2.12) to replace P∗ℓ
X (s) with a short Dirichlet polynomial together with

(2.13) and Cauchy-Schwarz, we conclude that

1

T

∫ 2T

T

|P∗ℓ
X (s)|2 dt =

∑
n∈Sq(X)

|βℓ(n)|2

n
(1 + Ok,ϵ(T

−ϵ/4)).

Thus, it remains to estimate the sum
∑

n∈Sq(X)
|βℓ(n)|2

n
. Since βℓ is multiplica-

tive and supported on Sq(X), we see that
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∑
n∈Sq(X)

|βℓ(n)|2

n
=
∏
p⩽X
p∤q

(
∞∑

m=0

|βℓ(p
m)|2

pm

)
.

Heuristically, βℓ(n) was chosen to approximate dℓ(n). So, we expect that we can

replace βℓ(p
m) with dℓ(p

m) on the right with a tolerable multiplicative error. Now,

recall that βℓ(n) = dℓ(n) when n ∈ Sq(
√
X), and βℓ(p) = dℓ(p) for p ⩽ X. Thus,

we can replace βℓ(p
m) by dℓ(p

m) if p ⩽
√
X or m = 1. Hence, it suffices to bound

∏
√
X<p⩽X

1 + |dℓ(p)|2
p

+
∑∞

m=2
|βℓ(p

m)|2
pm∑∞

m=0
|dℓ(pm)|

pm

.

However, this is clearly∏
√
X<p⩽X

(
1 + Ok

(
1

p2

))
= 1 + Ok

(
X−1/2

logX

)
.

Thus, ∑
n∈Sq(X)

|βℓ(n)|2

n
=

(
1 + Ok

(
X−1/2

logX

))∏
p⩽X
p∤q

(
∞∑

m=0

|dℓ(pm)|2

pm

)
. (2.14)

Note that we can write the product on the right as∏
p⩽X
p∤q

((
1 − 1

p

)|dℓ(p)|2 ∞∑
m=0

|dℓ(pm)|2

pm

)∏
p⩽X
p∤q

(
1 − 1

p

)−|dℓ(p)|2

The constraint p ⩽ X can be removed from the first product here as that induces

a multiplicative error given by∏
p>X

((
1 − 1

p

)|dℓ(p)|2 ∞∑
m=0

|dℓ(pm)|2

pm

)
=
∏
p>X

(
1 + Ok

(
1

p2

))
= 1 + Ok

(
1

X logX

)
.

On doing so, the expression now looks like

b(ℓ)
∏
p⩽X
p∤q

(
1 − 1

p

)−|dℓ(p)|2

. (2.15)



37

Now, define

rχ =
∑
ν,ν′

νν′=χ

ℓνℓν′ =
∑
ν

ℓνℓνχ.

In particular, note that rχ = rχ and rχ0 =
∑

χ ℓ
2
χ = λ. Further, define,

κ(c) =
∑
χ

rχχ(c).

Clearly κ(c) is real, and further the definition of dℓ(n) as a convolution gives

us that

|dℓ(p)|2 =
∑
χ

rχχ(p) =
∑
χ

rχχ(c) = κ(c).

if p ≡ c (mod q). In particular, this means that the product in (2.15) can be

divided along congruence classes modulo q, giving∏
(c,q)=1

∏
p⩽X

p≡c (mod q)

(
1 − 1

p

)−κ(c)

.

where the outside product runs over a set of representatives of all residue classes

coprime to q. Thus, applying Lemma 2.2.1, this is(
1 + Oq

(
1

logX

)) ∏
(c,q)=1

Hq
c (κ(c)).

In fact, we have that FX(ℓ) =
∏

(c,q)=1 H
q
c (κ(c)). To see this, note by orthog-

onality of characters,∑
(c,q)=1

κ(c) =
∑

(c,q)=1

∑
χ

rχχ(c) = rχ0φ(q) = λφ(q).

Thus,

∏
(c,q)=1

Hq
c (κ(c)) =

∏
(c,q)=1

[
eγ logX

∏
p

(
1 − 1

p

)1−δq(p,c)φ(q)
] κ(c)

φ(q)

= (eγ logX)λ
∏

(c,q)=1

∏
p

(
1 − 1

p

) κ(c)
φ(q)

−δq(p,c)κ(c)

= (eγ logX)λ
∏
p

(
1 − 1

p

)λ−|dℓ(p)|2

= FX(ℓ).
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Collecting our estimates together proves Theorem 2.1.3.

2.5 Heuristics for Conjecture 2.1.4

We closely follow the arguments in [38, §4] and [31, §4]. We want to heuristically

estimate
1

T

∫ 2T

T

|Zℓ
X(s)|2 dt

for s = 1/2 + it. The factor ZX(s, χ) arises as a partial Hadamard product for

L(s, χ∗), where χ∗ is the unique primitive character that induces χ. For a fixed χ,

L(s, χ∗) in the t-aspect forms a unitary family, and so we replace each ZX(s, χ)

with a unitary matrix chosen uniformly with respect to the Haar measure.

The approximate mean density of the zeros of L(s, χ∗) in the region 0 ⩽ σ ⩽ 1

and T ⩽ t ⩽ 2T is given by

1

π
D(χ, T ) =

1

π
log

(
q∗(χ)T

2π

)
where q∗(χ) is the conductor of χ. The rescaled zeroes of L(s, χ∗) at height T are

well-modeled by the eigenangles of a uniformly sampled unitary matrix U(N(χ))

of size N(χ) = ⌊D(χ, T )⌋.

We now assume the Generalized Riemann Hypothesis for all characters modulo

q. Thus, the non-trivial zeros of L(s, χ∗) are of the form 1/2 + iγ(χ) where γ runs

over a discrete (multi)set of real numbers depending on χ. Now, consider the

trignometric integral

Ci(z) = −
∫ ∞

z

cosw

w
dw.

If E1(z) =
∫∞
z

e−ww−1 dw is the exponential integral as in Theorem 2.1.1, then

ℜ{E1(ix)} = −Ci(|x|).
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Hence, using the definition of Zℓ
X(s) and ZX(s, χ),

1

T

∫ 2T

T

∣∣Zℓ
X

(
1
2

+ it
)∣∣2 dt =

1

T

∫ 2T

T

∏
χ

∣∣ZX

(
1
2

+ it, χ
)∣∣2ℓχ dt

=
1

T

∫ 2T

T

∏
χ

∏
γ(χ)

exp

(
2ℓχ

∫ e

1

u(y) Ci(|t− γ(χ)| log y logX)

)
dy dt,

where u(y) is a non-negative function of mass 1 supported in [e1−1/X , e], as in

Theorem 2.1.1, and we have used GRH. Now, following [38, Equation 4.8], if we

define ϕ(m, θ) by,

ϕ(m, θ) = exp

(
2m

∫ e

1

u(y) Ci(|θ| log y logX)

)
,

then we see that the above integral is modeled by

E

∏
χ

N(χ)∏
n=1

ϕ(ℓχ, θn(χ))

 ,

where θn(χ) is the nth eigenangle of U(N(χ)). Here, the expectation is taken

against the probability space from which the random matrices U(N(χ)) are drawn.

In particular, we make an independence assumption between the U(N(χ)) for any

finite set of distinct characters χ, similar to [38]. Thus, the expectation factorises,

giving ∏
χ

E

N(χ)∏
n=1

ϕ(ℓχ, θn(χ))

 .

We can now use [31, Theorem 4] (see also [38, Equation 4.10]), to compute the

expectation inside. This gives us

∏
χ

[
G(ℓχ + 1)2

G(2ℓχ + 1)

(
N(χ)

eγ logX

)ℓ2χ
(

1 + Oℓχ

(
1

logX

))]
.

Finally, recall that N(χ) ≈ log(q∗(χ)T ), completing the heuristic.
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2.6 Proof of Theorem 2.1.6

We begin this section by observing that to prove Theorem 2.1.6 for |ℓ| = 1, it

suffices to verify Conjecture 2.1.4 for |ℓ| = 1. To see this note that |ℓ| = 1 is the

same as ℓ = δχ. Now, it is well-known (see, for example, Lemma 2.2.5) that for a

fixed q,
1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)∣∣2 dt ∼ φ(q)

q
log T.

Further, putting ℓ = δχ in Theorem 2.1.3 gives

1

T

∫ 2T

T

∣∣PX

(
1
2

+ it, χ
)∣∣2 dt ∼ φ(q)

q
(eγ logX),

provided that q2 < X ≪ϵ (log T )2−ϵ. Finally, Conjecture 2.1.4 for ℓ = δχ states

that for X,T → ∞ with X ≪ϵ (log T )2−ϵ,

1

T

∫ 2T

T

∣∣ZX

(
1
2

+ it, χ
)∣∣2 dt ∼ log q∗(χ)T

eγ logX
. (2.16)

Thus, we see that if we can prove (2.16), then Theorem 2.1.6 follows.

Our first step towards proving (2.16) is the following lemma which is a straight-

forward corollary of Lemma 2.2.6:

Lemma 2.6.1. Let ℓ be a tuple of nonnegative integers indexed by characters

modulo q such that |ℓ| =
∑

χ ℓχ = k, define

QX(s, χ) =
∏

p⩽
√
X

(
1 − χ(p)

ps

) ∏
√
X<p⩽X

(
1 − χ(p)

ps
+

χ(p)2

2p2s

)
,

and define

Qℓ
X(s) =

∏
χ

QX(s, χ)ℓχ .

Then, uniformly for σ ⩾ 1/2 and X > q2,

[
Pℓ

X(s)
]−1

= Qℓ
X(s)

(
1 + Ok

(
1

logX

))
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Proof. Clearly it suffices to restrict ourselves to ℓ = δχ. Then, by Lemma 2.2.6,

PX(s, χ)QX(s, χ) = P ∗
X(s, χ)QX(s, χ)

(
1 + O

(
1

logX

))
=

(
1 + O

(
1

logX

)) ∏
√
X<p⩽X

(
1 + O

(
1

p3σ

))

= 1 + O

(
1

logX

)
,

as desired.

In view of the previous lemma and Theorem 2.1.1, to prove (2.16) we want to

show
1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)
QX

(
1
2

+ it, χ
)∣∣2 dt ∼ log q∗(χ)T

eγ logX
.

Furthermore, we can assume without loss of generality that χ is primitive. To see

this, let χ∗ be the Dirichlet character modulo q∗(χ) which induces χ. Then, L(s, χ)

and L(s, χ∗) differ only by local factors corresponding to primes p dividing q but

not dividing q∗(χ) and similarly for X > q2, QX(s, χ) and QX(s, χ∗) also differ only

by local factors corresponding to such p. In particular, we see that on multiplying

these local factors cancel out, giving L(s, χ)QX(s, χ) = L(s, χ∗)QX(s, χ∗).

Thus, for χ primitive, we want to show that

1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)
QX

(
1
2

+ it, χ
)∣∣2 dt ∼ log qT

eγ logX
.

Now, writing QX(s, χ) as a Dirichlet series, we have

QX (s, χ) =
∞∑
n=1

β−1(n)

ns
,

where β−1(n) is multiplicative and supported on Sq(X), |β−1(n)| ≪ d(n), and for

n ∈ Sq(
√
X) and p ∈ Sq(X), we have β−1(n) = µ(n)χ(n) and β−1(p) = µ(p)χ(p).



42

Now, further, define QX(s) = QX(s, 1) where 1 here is the sole character

modulo 1, and let

QX(s) =
∞∑
n=1

α−1(n)

ns
.

Then we see that α−1(n) as defined above is the same as in [31, §5], and further

it is immediate that for n ∈ Sq(X), β−1(n) = α−1(n)χ(n).

Mimicking the argument for (2.12), one can show that

QX

(
1
2

+ it, χ
)

=
∑
n⩽T θ

n∈Sq(X)

β−1(n)

n1/2+it
+ Oϵ,θ(T

−θϵ/10)

=
∑
n⩽T θ

n∈Sq(X)

α−1(n)χ(n)

n1/2+it
+ Oϵ,θ(T

−θϵ/10),

(2.17)

for ϵ > 0 small enough.

Putting θ = 1/20, and b(n) = α−1(n) in Lemma 2.2.5, we get that

M(T ;χ, α−1) = M ′(T ;χ, α−1) + O(T−ε), (2.18)

with M = M 1
20

, M ′ = M ′
1
20

and ε = ε 1
20

> 0.

We first compute the main term M ′(T ;χ, α−1). Since, [m,n](m,n) = mn,

M ′(χ, α−1, T ) is

φ(q)

q

∑
m,n⩽T 1/20

m,n∈Sq(X)

α−1(m)

m

α−1(n)

n
(m,n)

{
log

(
qT (m,n)2

2πmn

)
+ Oq(1)

}
.

Now, note that any estimates [31, pp. 530-531] can be applied to the above,

provided we add the restrictions (m, q) = (n, q) = (g, q) = 1 to the sums, and

replace log T with log qT . In particular, following the argument for [31, Equa-

tion 34], we conclude that M ′(T ;χ, α−1) is

φ(q) log qT

q

∑
m,n⩽T 1/20

m,n∈Sq(X)

α−1(m)

m

α−1(n)

n
(m,n) + Oq((logX)10).
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Since
∑

g|m
g|n

φ(g) = (m,n), the inner sum is

∑
m,n⩽T 1/20

m,n∈Sq(X)

α−1(m)

m

α−1(n)

n

∑
g|m
g|n

φ(g) =
∑

g⩽T 1/20

g∈Sq(X)

φ(g)

g2

( ∑
n⩽T1/20

g

n∈Sq(X))

α−1(gn)

n

)2

Following the argument for [31, Equation 37] here, we can extend both the sum-

mations above to infinity to get that M ′(T ;χ, α−1) is

φ(q) log qT

q

∑
g∈Sq(X)

φ(g)

g2

 ∑
n∈Sq(X))

α−1(gn)

n

2

+ Oq((logX)10).

By the muliplicativity of α−1 and φ, the sum here can be written as an Euler

product ∏
p⩽X
p∤q

( ∑
r,j,k⩾0

φ(pr)α−1(p
r+j)α−1(p

r+k)

p2r+j+k

)
.

Now, recalling that α−1(n) = µ(n) if n ∈ Sq(
√
X), α−1(p) = µ(p) for all

p ⩽ X and α−1(n) ≪ d(n) for all n ∈ Sq(X), we get that this product is equal to∏
p⩽

√
X

p∤q

(
1 − 1

p

) ∏
√
X<p⩽X
p∤q

(
1 − 1

p
+ O

(
1

p2

))

=
q

φ(q)

∏
p⩽X

(
1 − 1

p

) ∏
√
X<p⩽X

(
1 + O

(
1

p2

))

=
q

φ(q)
· 1

eγ logX

(
1 + O

(
1

logX

))
.

Thus, since logX ≪ log log T , we see that, in fact

M ′(T ;χ, α−1) =
log qT

eγ logX

(
1 + O

(
1

logX

))
(2.19)

Writing (2.17) with θ = 1/20 as QX(1/2 + it, χ) = Q∗
X + O(T−ϵ/200),
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1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)
QX

(
1
2

+ it, χ
)∣∣2 dt

=
1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)
Q∗

X

∣∣2 dt

+ O

(
1

T 1+
ϵ

200

∫ 2T

T

∣∣∣L (12 + it, χ
)2

Q∗
X

∣∣∣ dt)
+ O

(
1

T 1+
ϵ

100

∫ 2T

T

∣∣L (1
2

+ it, χ
)∣∣2 dt

)
.

The first term here is M ′(T ;χ, α−1) + O(T−ε). The last term is ≪q T
−ϵ/200 since

the second moment of L(s, χ) is ≪q T log T . Finally, by Cauchy-Schwarz and

(2.19), the second term is

≪ 1

T 1+
ϵ

200

(∫ 2T

T

∣∣L (1
2

+ it, χ
)
Q∗

X

∣∣2 dt

∫ 2T

T

∣∣L (1
2

+ it, χ
)∣∣2 dt

)1/2

≪ 1

T 1+
ϵ

200

(
T 2(log T )2

logX

)1/2

≪ T− ϵ
400 .

Putting these estimates together with (2.19), we get that

1

T

∫ 2T

T

∣∣L (1
2

+ it, χ
)
QX

(
1
2

+ it, χ
)∣∣2 dt

= M ′(T ;χ, α−1) + O(T−ϑ)

=
log qT

eγ logX

(
1 + O

(
1

logX

))
,

for some ϑ = ϑ(ϵ, ε 1
20

) > 0 completing the proof of Theorem 2.1.6.

2.7 Proof of Theorem 2.1.5

In this section, we prove Theorem 2.1.5, and verify that the conjectural con-

stant cℓ(q) matches up with the constants in the known asymptotics (see Lem-

mata 2.2.3 and 2.2.4).
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The proof is straightforward. By Theorem 2.1.3, we get that assuming we hold

q, ℓ, and ϵ fixed, and let X,T → ∞ with X ≪ϵ (log T )2−ϵ,

1

T

∫ 2T

T

|Pℓ
X(s)|2 dt = (eγ logX)λ

∏
p

{(
1 − 1

p

)λ ∞∑
m=0

|dℓ(pm)|2

pm

}
. (2.20)

Further, since we are assuming Conjecture 2.1.4 for ℓ, we get that under the same

conditions as before,

1

T

∫ 2T

T

|Zℓ
X(s)|2 dt ∼

∏
χ

[
G(ℓχ + 1)2

G(2ℓχ + 1)

(
log q∗(χ)T

eγ logX

)ℓ2χ
]

=
1

(eγ logX)λ

∏
χ

[
G(ℓχ + 1)2

G(2ℓχ + 1)
(log q∗(χ)T )ℓ

2
χ

]
.

(2.21)

Finally, since we are assuming that Conjecture 2.1.2 is true for ℓ, we get that for

X,T as before,

1

T

∫ 2T

T

∣∣Lℓ(s)
∣∣2 dt ∼

(
1

T

∫ 2T

T

∣∣Pℓ
X(s)

∣∣2 dt

)
×
(

1

T

∫ 2T

T

∣∣Zℓ
X(s)

∣∣2 dt

)
.

Multiplying (2.20) and (2.21) and inserting above, we see that the (eγ logX)λ

factors cancel out, and the constants combine to become cℓ(q), giving

1

T

∫ 2T

T

∣∣Lℓ(s)
∣∣2 dt ∼ cℓ(q)

∏
χ

(
log q∗(χ)T

)ℓ2χ

,

as desired.

We now verify that the constants match up. Let C ′(χ) and D′(χ, ν) be the

constants predicted by Theorem 2.1.5. Then, C ′(χ) = cℓ(q) for ℓ = 2δχ, and

D′(χ, ν) = cℓ(q) for ℓ = δχ + δν , χ ̸= ν.

To show that C(χ) = C ′(χ) and D(χ, ν) = D′(χ, ν), the plan of attack will be

to write everything involved as an Euler product, and then compare what happens

on both sides in the local factors for different primes p.

In particular, recall Ingham’s result that c2 = 1
2π2 . Thus, using this, we can

suppress the local factors for p ∤ q when showing C(χ) = C ′(χ). Rewriting C(χ)
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in Euler product form using a standard formula for φ(q)/q, we see that

C(χ) = c2
∏
p|q

(
1 − 1

p

)2(
1 − 2

p + 1

)

= c2
∏
p|q

(
1 − 1

p

)3(
1 +

1

p

)−1

.

(2.22)

Now since C ′(χ) = cℓ(q) for ℓ = 2δχ, we get that λ = 22 = 4, dℓ(n) = χ0(n)d2(n)

where χ0 is the principal character modulo q, and hence

C ′(χ) = cℓ(q) =

[∏
p

{(
1 − 1

p

)4 ∞∑
m=0

χ0(p
m)d2(p

m)2

pm

}][
G(3)2

G(5)

]
.

Recall that

c2 =

[∏
p

{(
1 − 1

p

)4 ∞∑
m=0

d2(p
m)2

pm

}][
G(3)2

G(5)

]
.

Thus, we see that

C ′(χ) = c2
∏
p|q

{
∞∑

m=0

d2(p
m)2

pm

}−1

. (2.23)

In light of (2.22) and (2.23), it suffices to note the power series equality

∞∑
m=0

d2(p
m)2zm =

1 + z

(1 − z)3
,

for |z| < 1, as then plugging in z = 1/p and taking products over p | q gives us

C(χ) = C ′(χ). To see the above power series equality, note that d2(p
m) = m + 1

and hence this follows straightforwardly from the geometric series formula.

Now we turn to showing D(χ, ν) = D′(χ, ν). Since D′(χ, ν) = cℓ(q) for ℓ =

δχ + δν , hence Lℓ(s) = L(s, χ)L(s, ν) and dℓ = χ ∗ ν, where ∗ denotes Dirichlet

convolution. Because ν is completely multiplicative, dℓ(n) = ν(n){1 ∗ (χν)}(n).

In particular, it follows that |dℓ(n)|2 depends only on χν and not the individual

characters χ and ν. Thus, D′(χ, ν) also depends only on χν. By inspection, we

see that D(χ, ν) also depends only on χν. Thus, without loss of generality, we can

assume that ν = χ0. It now suffices to show that for χ ̸= χ0, D(χ, χ0) = D′(χ, χ0).
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For ℓ = δχ+δχ0 , we see that λ = 12+12 = 2. Further, dℓ(n) = χ0(n){1∗χ}(n).

Finally the product over χ in the expression for cℓ(q) vanishes, since G(1)2/G(3) =

1. Thus, we get

D′(χ, χ0) =
∏
p

{(
1 − 1

p

)2 ∞∑
m=0

χ0(p
m)|(1 ∗ χ)(pm)|2

pm

}
(2.24)

Now, using the Euler product formulae,

6

π2
=

1

ζ(2)
=
∏
p

(
1 − 1

p2

)
and

L(1, χ) =
∏
p

1

1 − χ(p)p−1
,

where the latter holds because χ ̸= χ0, we see that

D(χ, χ0) =
6

π2
|L(1, χ)|2φ(q)

q

∏
p

(
1 − 1

p + 1

)

=

{∏
p

1 − p−2

(1 − χ(p)p−1)(1 − χ(p)p−1)

}∏
p|q

1 − p−1

1 + p−1

 .

(2.25)

Comparing the local factors corresponding to primes p dividing q, we see that

for D′(χ, χ0) these are (1 − p−1)2, while for D(χ, χ0), they are

(1 − p−2)(1 − p−1)

1 + p−1
= (1 − p−1)2.

Thus, it remains to check the local factors corresponding to primes p which are

coprime to q. For D(χ, χ0), these are of the shape

1 − p−2

(1 − χ(p)p−1)(1 − χ(p)p−1)
,

while for D′(χ, χ0), these are of the shape(
1 − 1

p

)2 ∞∑
m=0

|(1 ∗ χ)(pm)|2

pm
.
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Thus, to prove D(χ, χ0) = D′(χ, χ0) it clearly suffices to prove the power series

equality

1 + z

(1 − ωz)(1 − ωz)
= (1 − z)

∞∑
m=0

∣∣∣∣∣
m∑
j=0

ωj

∣∣∣∣∣
2

zm,

for |z| < 1 and |ω| = 1, as then plugging in z = 1/p, ω = χ(p) and multiplying

both sides by (1 − p−1) gives us the desired equality.

To prove this power series equality note that both sides are equal to

∑
m⩾0

∑
|j|⩽m

ωj

 zm, (2.26)

where the sum over j runs through all integers in [−m,m]. For the right hand

side, this follows from opening the square; for the left hand side it follows from

the geometric series formula.

This discussion shows that the conjectural constants cℓ(q) from Theorem 2.1.5

are correct for ℓ = δχ + δν where χ, ν are not necessarily distinct Dirichlet char-

acters modulo q. One could, in principle, use Topacogullari’s results from [82] to

verify the analoguous constants for products of the form L(s, χ)L(s, ν) with χ, ν

possibly having distinct moduli.
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3 Moments of the Hurwitz zeta

function with rational shifts

3.1 Introduction

Our goal in this chapter is to present the evidence for Conjecture 1.0.1, making

use of the results of Chapter 2 when necessary. The conjectural asymptotic

Mk(T ;α) ∼ ck(α)T (log T )k
2

,

for some constant ck(α) given α ∈ Q is not hard to believe given (1.1). Our

particular aim here is to explore the structure of ck(α).

When k = 1, Conjecture 1.0.1 is actually a theorem due to Rane [73, Theorem

2], with c1(α) = 1. In fact, he proved for 0 < α ⩽ 1 (not necessarily rational),

M1(T ;α) = T log T + B(α)T − 1

α
+ O

(
T 1/2 log T

α1/2

)
(3.1)

uniformly in α and T with an effective constant B(α). This was improved further

by several authors, with the current best error term due to Zhan [89, Theorem 2].

For k = 2, the conjecture can be proved using methods for fourth moments of

L-functions of degree 1. This was done in an unpublished section of Andersson’s

thesis [1, pp. 71-72]. We restate and reprove this result here for convenience:
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Theorem 3.1.1. Let a, q ⩾ 1 be fixed integers with (a, q) = 1, 1 ⩽ a ⩽ q. Then,

for α = a/q,

M2(T ;α) =

∫ 2T

T

∣∣ζ (1
2

+ it, α
)∣∣4 dt ∼ T (log T )4

2π2q

∏
p|q

(
1 − 1

p + 1

)
,

as T → ∞. That is, Conjecture 1.0.1 is true for k = 2 and α = a/q, with

c2(α) =
1

2π2q

∏
p|q

(
1 − 1

p + 1

)
=

c2
q

∏
p|q

(
1 − 1

p + 1

)
,

where c2 = c2(1) = 1/(2π2) is the usual proportionality constant for the fourth

moment of ζ(s). More precisely, we have

M2(T ;α) = c2(α)T (log T )4 + Oq(T (log T )3).

We show later that this agrees with our conjecture for ck(α). In principle, one

could also work out the lower order terms in this asymptotic.

It should be evident that our previous discussions about (2.2) and Theo-

rem 2.1.5 can together be used to compute the correct value of ck(α) in Con-

jecture 1.0.1.

Theorem 3.1.2. Let k ⩾ 0 and a, q ⩾ 1 be fixed integers with (a, q) = 1,

1 ⩽ a ⩽ q. If Conjecture 2.1.2 and Conjecture 2.1.4 are true for all tuples of

nonnegative integers ℓ indexed by characters modulo q satisfying |ℓ| = k, then

Conjecture 1.0.1 follows for that value of k and α = a/q. In other words, under

the above hypotheses,∫ 2T

T

∣∣ζ (1
2

+ it, α
)∣∣2k dt ∼ ck(α)T (log T )k

2

,

as T → ∞ where ck(α) is as in (1.4).

Note that Theorem 3.1.2 and Theorem 2.1.6 together establish Conjecture 1.0.1

with k = 1 and α rational, giving an alternate proof of the leading term of Rane’s

asymptotic (3.1) in this case.
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Lastly, as a final piece of evidence for Conjecture 1.0.1, we prove the following

results about upper and lower bounds:

Theorem 3.1.3. Let k ⩾ 0 and a, q ⩾ 1 be fixed integers with (a, q) = 1, 1 ⩽

a ⩽ q. If the Generalized Riemann Hypothesis (GRH) holds for every Dirichlet

L-function modulo q, then for α = a/q, s = 1/2 + it and ϵ > 0,

T (log T )k
2 ≪q,k

∫ 2T

T

|ζ (s, α)|2k dt ≪q,k,ϵ T (log T )k
2+ϵ

In principle, it should be possible to remove the ϵ in the upper bound by using

the methods of Harper [34].

3.2 Proof of Theorem 3.1.2

The main result of this section is the following proposition which is one way to

make the heuristic in (2.2) rigorous:

Proposition 3.2.1. Let Mk(T ;α) be as in (1.3), and for any Dirichlet character

χ modulo q, define Mk(T ;χ) by

Mk(T ;χ) =

∫ 2T

T

∣∣L (1
2

+ it, χ
)∣∣2k dt.

If either GRH(q) or Sp(q, k) holds, and α = a/q with (a, q) = 1, then

Mk(T ;α) =
qk

φ(q)2k

∑
χ

Mk(T ;χ) + oq,k(T (log T )k
2

).

If k = 1 or k = 2, then the above can be proved unconditionally.

We show that this proposition establishes Theorem 3.1.2. Note that under the

hypothesis of Theorem 3.1.2, Sp(q, k) holds, and hence so does the conclusion of

Theorem 2.1.5. Thus, for a fixed q, χ, and with ℓ = kδχ, we get the asymptotic

Mk(T ;χ) = (cℓ(q) + oq,k(1))T (log T )k
2

.
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Thus, by Proposition 3.2.1,

Mk(T ;α) =
qk

φ(q)2k

(∑
ℓ=kδχ

cℓ(q)

)
T (log T )k

2

+ oq,k(T (log T )k
2

),

which establishes Theorem 3.1.2 with

ck(α) =
qk

φ(q)2k

(∑
ℓ=kδχ

cℓ(q)

)
, (3.2)

where the sum runs over all tuples ℓ of the form kδχ for some character χ. It

remains to simplify the constant. Note that for ℓ = kδχ, dℓ(n) = χ(n)dk(n), where

dk(n) is the usual divisor function. In particular, this means that |dℓ(pm)|2 =

χ0(p
m)dk(pm)2, and hence cℓ(q) depends only on the modulus of χ. Further,

λ(ℓ) = k2. Thus,

cℓ(q) =
∏
p

{(
1 − 1

p

)k2 ∞∑
m=0

χ0(p
m)dk(pm)2

pm

}
G(k + 1)

G(2k + 1)
,

for every ℓ appearing in the sum in (3.2). We see that cℓ(q) is the same as usual

constant for ζ(s), ck = ck(1) but with a slight change in the local factors in the

Euler product corresponding to those primes p which divide q. That is,

cℓ(q) = ck
∏
p|q

{
∞∑

m=0

d(pm)2

pm

}−1

= ck
∏
p|q

{
∞∑

m=0

(
m + k − 1

k − 1

)2

p−m

}−1

. (3.3)

Substituting this back into (3.2),

ck(α) = ck
qk

φ(q)2k−1

∏
p|q

{
∞∑

m=0

(
m + k − 1

k − 1

)2

p−m

}−1

,

as desired. This completes the proof of Theorem 3.1.2 from Proposition 3.2.1.

We now turn to the proof of Proposition 3.2.1. By (2.1), Mk(T ;α) is equal to

qk

φ(q)2k

∑
|ℓ(1)|=k,

|ℓ(2)|=k

(
k

ℓ(1)

)(
k

ℓ(2)

)[∏
χ

χ(a)ℓ
(2)
χ −ℓ

(1)
χ

]∫ 2T

T

Lℓ(1)(s)Lℓ(2)(s) dt, (3.4)

where s = 1/2 + it. We divide the terms in the sum into four types:
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� The primary diagonal terms. These correspond to ℓ(1) = ℓ(2) = kδχ for

some character χ. For such terms, it is clear that
(

k
ℓ(j)

)
= 1 and the integral

devolves to Mk(T ;χ).

� The secondary diagonal terms. These correspond to diagonal terms ℓ(1) =

ℓ(2) which are not main diagonal terms. Thus, ℓ = ℓ(1) = ℓ(2) ̸= kδχ for

every character χ modulo q. For such terms, the integral devolves to the

mean square of Lℓ(1/2 + it) over [T, 2T ].

� The major off-diagonal terms. These correspond to ℓ(1) = kδχ and ℓ(2) =

kδν for distinct characters χ, ν. For these terms, the integral devolves to∫ 2T

T
L(s, χ)kL(s, ν)

k
dt.

� The minor off-diagonal terms. These correspond to any terms which are not

of any of the above three forms.

The primary diagonal terms clearly give rise to the main term in Proposi-

tion 3.2.1. We will show, through a series of lemmata, that all the other terms

can be subsumed by the error term, thereby proving the proposition.

Lemma 3.2.2. The secondary diagonal terms contribute at most oq,k(T (log T )k
2
)

to the sum in (3.4).

Proof. We simply apply Lemma 2.2.2. It is clear that the constant
(
k
ℓ

)2
in the the

secondary diagonal terms can be subsumed into the implicit constant from the

second bound in this lemma. Taking, for example, ϵ = 1/2 shows that each such

term is oq,k(T (log T )k
2
) and since there are only ≪q,k 1 such terms it follows that

these contribute only oq,k(T (log T )k
2
).

The minor off-diagonal terms can be handled by Cauchy-Schwarz. This is very

far from sharp, but our other error terms are already of size ≍q,k T (log T )k
2−2k+2

and so this suffices for our purposes.
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Lemma 3.2.3. Suppose that either GRH(q) or Sp(q, k) holds and that ℓ(1) and ℓ(2)

are tuples of nonnegative integers characters modulo q satisfying |ℓ(1)| = |ℓ(2)| = k.

Further, suppose that ℓ(1), ℓ(2) correspond to a minor off-diagonal term, as defined

above. Then, for s = 1/2 + it and any ϵ > 0,∫ 2T

T

Lℓ(1)(s)Lℓ(2)(s) dt ≪q,k,ϵ T (log T )k
2−1/2+ϵ,

and hence, the minor off-diagonal terms in (3.4) contribute at most oq,k(T (log T )k
2
)

to the sum.

Proof. Since (ℓ(1), ℓ(2)) corresponds to an off-diagonal term, ℓ(1) ̸= ℓ(2). Further,

since it is not a major off-diagonal term we must have that either ℓ(1) or ℓ(2) is not

of the form kδχ for some character χ. Due to symmetry, we can assume without

loss of generality that ℓ(1) ̸= kδχ for all characters χ. Then, by Cauchy-Schwarz

and Lemma 2.2.2, we get for s = 1/2 + it,

∫ 2T

T

Lℓ(1)(s)Lℓ(2)(s) dt

≪
(∫ 2T

T

∣∣∣Lℓ(1)(s)
∣∣∣2 dt

)1/2(∫ 2T

T

∣∣∣Lℓ(2)(s)
∣∣∣2 dt

)1/2

≪q,k,ϵ

{
T (log T )k

2−1+ϵ
}1/2 {

T (log T )k
2+ϵ
}1/2

= T (log T )k
2−1/2+ϵ.

Showing that these terms contribute to the error is similar to the previous

lemma, hence we omit the proof.

We note in passing that if k = 1, there are no secondary diagonal terms or

minor off-diagonal terms, and so the previous two lemmata are unnecessary.

It remains to deal with the major non-diagonal terms. If k ⩾ 2, then again

Cauchy-Schwarz suffices.
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Lemma 3.2.4. Suppose that either GRH(q) or Sp(q, k) holds for some k ⩾ 2 and

that χ and ν are distinct characters modulo q. Then, for s = 1/2 + it and any

ϵ > 0, ∫ 2T

T

L(s, χ)kL(s, ν)
k
dt ≪q,k,ϵ T (log T )k

2−2k+2+ϵ,

and hence, the major off-diagonal terms in (3.4) contribute at most oq,k(T (log T )k
2
)

to the sum.

Proof. Note that,

L(s, χ)kL(s, ν)
k

=
[
L(s, χ)k−1L(s, ν)

] [
L(s, χ)L(s, ν)

k−1
]
.

Thus, setting

ℓ(1) = (k − 1)δχ + δν

and

ℓ(2) = δχ + (k − 1)δν ,

we see by Cauchy-Schwarz and Lemma 2.2.2 that∫ 2T

T

L(s, χ)kL(s, ν)k dt

≪
(∫ 2T

T

∣∣∣Lℓ(1)(1/2 + it)
∣∣∣2 dt

)1/2(∫ 2T

T

∣∣∣Lℓ(2)(1/2 + it)
∣∣∣2 dt

)1/2

≪q,k,ϵ

{
T (log T )k

2−2k+2+ϵ
}1/2 {

T (log T )k
2−2k+2+ϵ

}1/2

= T (log T )k
2−2k+2+ϵ,

proving the desired bound. Showing that these terms contribute to the error is

similar to the above lemmata, and hence omitted.

From the discussion above, it remains to deal with the off-diagonal terms

when k = 1, and to show that the argument can be made unconditional for k = 2.
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We postpone the latter to §3.3, as it will be a corollary of the discussion about

Theorem 3.1.1.

For the former, since we also claimed that Proposition 3.2.1 is unconditional

in this case, we cannot use the hypotheses GRH(q) or Sp(q, k). For such terms,

standard techniques developed to handle the mean square of ζ(s) can be applied.

For our purposes, the following lemma suffices:

Lemma 3.2.5. Let χ and ν be distinct characters modulo q. Then, for s =

1/2 + it,

∫ 2T

T

L(s, χ)L(s, ν) dt ≪q T (log T )3/4,

unconditionally. Hence, if k = 1, the off-diagonal terms in (3.4) contribute only

oq(T log T ) to the sum.

Proof. The upper bound is [50, Equation 4] with χj = χ and χk = ν. Showing

that these terms contribute to the error is similar to the previous lemmata, and

hence omitted.

Proposition 3.2.1 follows by putting all these lemmata together, thus complet-

ing the proof of Theorem 3.1.2.

3.2.1 Proof of Theorem 3.1.3

In order to prove Theorem 3.1.3, we have to find bounds on Mk(T ;α) conditionally

on GRH.

The claimed upper bound follows trivially from the previous subsection, since

Proposition 3.2.1 tells us that on GRH(q),

Mk(T ;α) ≪q,k

∑
χ

Mk(T ;χ) + T (log T )k
2

,
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and Lemma 2.2.2 tells us that on GRH(q),

Mk(T ;χ) ≪q,k,ϵ T (log T )k
2+ϵ.

To prove the lower bound, we proceed by reducing the problem to computing

lower bounds for the moments of ζ(s), i.e. lower bounds on Mk(T ). The key fact

is the following obvious lemma:

Lemma 3.2.6. Let χ0 be the principal Dirichlet character modulo q. Then,∫ 2T

T

∣∣L (1
2

+ it, χ0

)∣∣2k dt ≍q,k

∫ 2T

T

∣∣ζ (1
2

+ it
)∣∣2k dt.

In particular, this tells us that Mk(T ;χ0) ≫q,k Mk(T ). By the deep results in

the literature about lower bounds for Mk(T ) mentioned in the introduction, we

can conclude that in fact Mk(T ;χ0) ≫q,k T (log T )k
2
.

Then, by Proposition 3.2.1, we have conditionally on GRH,

Mk(T ;α) ≫q,k

∑
χ

Mk(T ;χ) + oq,k(T (log T )k
2

)

⩾ Mk(T ;χ0) + oq,k(T (log T )k
2

)

≫q,k T (log T )k
2

,

completing the proof.

3.3 Proof of Theorem 3.1.1

The goal here is to compute the asymptotic for M2(T ;α), for α ∈ Q originally

proved (unpublished) in Andersson’s thesis [1, pp. 71-72]. We reprove this here

as, in the process, we will be able to verify that our conjectures for the constants

cℓ(q) and ck(α) are correct when |ℓ| ⩽ 2 or k ⩽ 2. Further, our discussion will

imply that the conclusion in Proposition 3.2.1 is true unconditionally if k = 2.
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We note here that the previous two propositions show that the result of Propo-

sition 3.2.1 can be obtained unconditionally when k = 2, which we had not shown

previously. This is because the hypotheses GRH(q) or Sp(q, k) were used only in

the proof of Lemma 2.2.2 and this use can be replaced by the above propositions,

which trivially give the bound∫ 2T

T

∣∣Lℓ
(
1
2

+ it
)∣∣2 dt ≪q T (log T )λ

for ℓ satisfying |ℓ| = 2.

We now return to the proof of Theorem 3.1.1. We will set k = 2 in (3.4), and

use the same classification for the different terms that arise in the right hand side

of (3.4) as from §3.2.

We state some lemmata. Their proofs are analogous to the corresponding ones

from §3.2 and hence the details are omitted.

Lemma 3.3.1. Suppose that χ and ν are distinct characters modulo q. Then, for

s = 1/2 + it,

∫ 2T

T

L(s, χ)2L(s, ν)
2
≪q T (log T )2.

Proof. This is analogous to Lemma 3.2.4.

Lemma 3.3.2. Suppose that ℓ(1) and ℓ(2) are tuples of nonnegative integers in-

dexed by characters modulo q satisfying |ℓ(1)| = |ℓ(1)| = 2. Further, suppose that

ℓ(1) and ℓ(2) corresponds to a minor off-diagonal term. Then, for s = 1/2 + it,∫ 2T

T

Lℓ(1)(s)Lℓ(2)(s) dt ≪q T (log T )3.

Proof. This is analogous to Lemma 3.2.3.

We can now prove the theorem. Putting k = 2 in (3.4), we get

q2

φ(q)4

∑
|ℓ(1)|=2,

|ℓ(2)|=2

(
k

ℓ(1)

)(
k

ℓ(2)

)[∏
χ

χ(a)ℓ
(2)
χ −ℓ

(1)
χ

]∫ 2T

T

Lℓ(1)(s)Lℓ(2)(s) dt. (3.5)
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We now use Proposition 2.2.3 to deal with the terms with the primary diagonal

terms (i.e. those corresponding to ℓ(1) = ℓ(2) = 2δχ). The discussion from §3.2

tells us that summing the main terms from Proposition 2.2.3 over χ contributes

c2(α)T (log T )4, which gives the main term in Theorem 3.1.1. Note that this

matches up with the conjectural constant from Theorem 3.1.2 for k = 2.

It remains to show that all the remaining terms can be absorbed in the error

term in Theorem 3.1.1. We do this by applying Proposition 2.2.4, Lemma 3.3.1

and Lemma 3.3.2 appropriately to terms in (3.5), depending on their classification.

There are ≪ φ(q)4 such terms in (3.5), and they each contribute at most ≪q

T (log T )3. This completes the proof.
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4 Moments of the Hurwitz zeta

function with irrational shifts

and associated Diophantine

equations

4.1 Introduction

The content of this chapter, where unremarked is joint work with Winston Heap

and where specifically marked is joint work with Winston Heap and Trevor Woo-

ley. Our objective in this chapter is to persuade the reader of the plausibility of

Conjecture 1.0.2. The conjecture (joint with Winston Heap) states that

Mk(T ;α)

T
=

1

T

∫ 2T

T

|ζ(1
2

+ it, α)|2k dt ∼ k!(log T )k, (4.1)

for any algebraic irrational α with degree d ⩾ k and almost all transcendental α.

This conjectural asymptotic seems surprising when compared to Conjecture 1.0.1,

and the behaviour of moments in more arithmetic settings – it suggests that,

on average, the Hurwitz zeta function with an irrational shift parameter is much

smaller than with a rational shift. In fact, the probabilistically inclined reader may

realize that the right hand side of (4.1) are the moments of a complex normal
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variable with mean 0 and variance log T unlike the case of ζ(s), which is log-

normal (as per Selberg’s central limit theorem, see [68] and references therein).

Since the normal distribution is characterized by its moments, Conjecture 1.0.2

is tantamount to claiming that t 7→ ζ(1
2

+ it, α) is approximately normal1 on

t ∈ [T, 2T ] when T is large.

The first piece of evidence for our conjecture is another conjecture: in his PhD

thesis [1], Andersson conjectured that if one takes an average over α as well, then

the the asymptotic holds. Concretely, he conjectured

1

T

∫ 2

1

∫ 2T

T

|ζ(1
2

+ it, α)|2k dt dα ∼ k!(log T )k.

He also proved this conjecture for k = 2, while the case k = 1 follows from Rane’s

asymptotic (3.1). Our conjecture can be viewed as a point-wise version of this:

we expect the asymptotic to continue holding point-wise for a full measure set of

α.

For our second piece of evidence we first introduce the pseudomoments of

ζ(s, α), Pk(N ;α) defined by

Pk(N ;α) = lim
T→∞

1

T

∫ 2T

T

∣∣∣∣ ∑
0⩽n⩽N

1

(n + α)1/2+it

∣∣∣∣2kdt. (4.2)

In other words, the pseudomoment is obtained by taking a truncation to N of

the generalized Dirichlet series of ζ(s, α), computing the normalized moments at

scale T , and then taking T → ∞. This is similar to the analogous concept of

pseudomoments Pm
k (N) of ζ(s)m, where one replaces ζ(s)m by a truncation of its

Dirichlet series to get

Pm
k (N) = lim

T→∞

1

T

∫ 2T

T

∣∣∣∣ ∑
1⩽n⩽N

dm(n)

n1/2+it

∣∣∣∣2kdt. (4.3)

Evidently, P 1
k (N) = Pk(N ; 1). Pseudomoments were first considered by Conrey

and Gamburd [19] where they introduced P 1
k (N) and proved that

P 1
k (N) ∼ a(k)γ(k)(logN)k

2

,

1more precisely the complex normal CN (0, log T ) with independent real and imaginary parts
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where a(k) is the usual arithmetic factor (1.7) in the conjectural moments of ζ(s),

and γ(k) is the volume of a convex polytope. The reader should compare this

to Conjecture 1.2.2. Pseudomoments of ζ(s)m have since been studied by many

authors [11, 10, 37, 13, 29, 30]. One reason for interest in pseudomoments is the

connection to random multiplicative functions. Let f : N → S1 be a Steinhaus

random multiplicative function. That is,

{f(p) : p prime},

is a sequence of prime-indexed i.i.d. Steinhaus random variables2, and f(n) for

n ∈ N is defined by complete multiplicativity

f(n) =
∏
pα∥n

f(p)α.

With these definitions, one has

Pm
k (N) = E

[∣∣∣∑
n⩽N

dm(n)f(n)

n1/2

∣∣∣2k]. (4.4)

This relation is easy to see for integer k, as it follows from the orthogonality

relations

lim
T→∞

1

T

∫ 2T

T

( n1n2 · · ·nk

m1m2 · · ·mk

)−it

dt = 1n1n2···nk=m1m2···mk
,

and

E
[(

f(n1)f(n2) · · · f(nk)f(m1)f(m2) · · · f(mk)
)]

= 1n1n2···nk=m1m2···mk

simply by expanding the squares in (4.3) and (4.4).

This connection to random multipicative functions is sometimes called the

Bohr correspondence and is crucial in the Bohr–Jessen theory about the value

distribution of ζ(s) (see, for example, [57, Chapter 3]).

2i.e., independent and uniformly distributed on the complex unit circle S1
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Returning now to (4.2), opening the squares, pushing the limit and integral

inside, and using the orthogonality relation

lim
T→∞

1

T

∫ 2T

T

(x−it)dt = 1x=1,

we obtain

Pk(N ;α) =
∑

0⩽mj ,nj⩽N
1⩽j⩽k

1(n1+α)···(nk+α)=(m1+α)···(mk+α)

(n1 + α)1/2 · · · (nk + α)1/2(m1 + α)1/2 · · · (mk + α)1/2
.

(4.5)

Now, if we assume that α is transcendental3, then we find that there are no

solutions to the equation

(n1 + α) · · · (nk + α) = (m1 + α) · · · (mk + α),

apart from the “diagonal” ones in which the tuple (m1, . . . ,mk) is a permutation

of (n1, . . . , nk), as any such solution would exhibit that α is a root of the non-zero

polynomial

F (t) = Fn,m(t) :=
k∏

j=1

(t + nj) −
k∏

j=1

(t + mj),

contradicting the fact that α is transcendental4.

For most (n1, . . . , nk), there are k! such permutations, from which it follows

from (4.5) that

Pk(N ;α) ∼ k!
∑

0⩽nj⩽N
1⩽j⩽k

1∏
j(nj + α)

= k!
( ∑

0⩽n⩽N

1

n + α

)k
,

and hence we find that Pk(N ;α) ∼ k!(logN)k. This is our second piece of evidence

for Conjecture 1.0.2. In §4.2, we provide another interpretation of this calculation

that explains the occurrence of Gaussian moments in a more natural way.

3Assuming that the degree of α, d satisfies d ⩾ k is enough, interpreting the degree of a

transcendental number as being d = ∞.
4If we assumed that α is algebraic with d ⩾ k then the contradiction relies on the fact that

the degree of F (t) is strictly smaller than k.
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This previous calculation leads naturally to the question of finding solutions

to the Diophantine equation

(x1 + α) · · · (xk + α) = (y1 + α) · · · (yk + α), (4.6)

with 1 ⩽ xj, yk ⩽ N with 1 ⩽ j ⩽ k; this will lead to our third piece of evidence.

Note that we previously allowed for some variables to be 0 but we have removed

this case from the analysis for convenience. Our results will be valid for all irra-

tional α ∈ C, so one may recover this case by replacing (α,N) with (α−1, N +1).

This Diophantine equation was considered in joint work [42] of the author with

Winston Heap and Trevor Wooley5. As discussed in Chapter 1, this problem was

also considered independently by Bourgain, Garaev, Konyagin, and Shparlinski

[12], and our proofs are essentially the same.

The problem of finding integral solutions to (4.6) is complicated by the fact

that if the degree d of α satisfies d < k then the degree of Fx,y(t) above is high

enough for it to be potentially divisible by the minimal polynomial of α, which

means it is possible to have non-trivial solutions to (4.6), i.e., solutions in which

(x1, . . . , xk) is not a permutation of (y1, . . . , yk). To state our results in this regard,

we introduce, for ν ∈ Z[α],

τk(ν;N,α) =
∑

1⩽d1⩽N

. . .
∑

1⩽dk⩽N

(d1+α)···(dk+α)=ν

1.

One may interpret this as a k-fold divisor function in Z[α], where one has restricted

to divisors in the set {n + α : n ⩽ N, n ∈ N}. We also introduce Tk(N) to denote

the number of pairs of k-tuples x = (x1, . . . , xk) and y = (y1, . . . , yk) such that

x is a permutation of y. Clearly, Tk(N) = k!Nk + Ok(Nk−1), with the main

contribution coming from those x in which x1, x2, · · · , xk are distinct.

5The notation here diverges from [42] where necessary to remain consistent with the rest of

this thesis.
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The mean value ∑
ν∈Z[α]

τk(ν;N,α)2

now counts the number of integral solutions of (4.6) with 1 ⩽ xj, yj ⩽ N for

1 ⩽ j ⩽ k. Our main result in this regard states that when α ̸∈ Q, then almost all

solutions of (4.6) are the diagonal ones in which x is a permutation of y. Thus,

almost all elements ν ∈ Z[α] that may be written as a k-fold product of shifted

integers n + α are represented essentially uniquely in this manner.

The result may then be stated as follows.

Theorem 4.1.1 (Heap–S.–Wooley, 2023). Let k ∈ N and ϵ > 0. Suppose that

α ∈ C is algebraic of degree d over Q, where 2 ⩽ d < k. Then one has∑
ν∈Z[α]

τk(ν;N,α)2 = Tk(N) + Ok,α,ϵ(N
k−d+1+ϵ).

If instead α ∈ C is either transcendental, or else algebraic of degree d over Q with

d ⩾ k, then one may omit the error term.

It follows that when α ̸∈ Q, then there is a paucity of non-diagonal solutions

in the equation (4.6). Moreover, one has the asymptotic formula∑
ν∈Z[α]

τk(ν;X,α)2 = k!Xk + Ok,ϵ(X
k−1+ϵ)

for α /∈ Q. These conclusions are in marked contrast with the corresponding

situation in which α ∈ Q. When α is rational, experts will recognise that a

straightforward exercise employing the circle method yields the lower bound∑
ν∈Z[α]

τk(ν;X,α)2 ≫α,k X
k(logX)(k−1)2 .

Indeed, additional work would exhibit an asymptotic formula in place of this

lower bound. In this regard, we note that the contour integral methods of [35, 44]

would also be accessible. The inquisitive reader interested in paucity problems
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for diagonal Diophantine systems will find a representative slice of the relevant

literature in [76, 77, 83, 86].

The basic strategy that we employ in the proof of Theorem 4.1.1 is inspired

by an examination of the polynomial Fx,y(t). There are parallels here with the

treatment of Vaughan and Wooley of the Vinogradov system [83]. The full proof

is presented in §4.3.

This completes our presentation of the evidence of Conjecture 1.0.2. In ongoing

work with Winston Heap [41], we are considering the case k = 2 of this conjecture.

4.2 Pseudomoments via the Central Limit The-

orem

To provide a natural reason for the appearance of Gaussian behaviour in the mo-

ments, we need the following consequence of Lyapunov’s criterion for the central

limit theorem [9, Theorem 27.3].

Lemma 4.2.1. Let {an}n⩾0, be a sequence of real numbers satisfying∑
n⩾0

|an|2 = ∞,

and for some δ > 0, ∑
n⩾0

|an|2+δ < ∞.

Further, suppose that {Xn}n⩾0 is a sequence of i.i.d. real-valued (resp. circularly-

symmetric6complex-valued) random variables that has mean 0 and variance 1.

Then, if

SN =
∑

0⩽n⩽N

anXn,

6A complex random variable Z is circularly-symmetric if eiθZ and Z have the same distri-

bution for any fixed θ ∈ [0, 2π).
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and

ŜN =
SN − E[SN ]√

V[SN ]
,

then ŜN converges in distribution to N (0, 1) (resp. CN (0, 1)) as N → ∞.

Proof. First we consider the case of real-valued random variables. Since the Xn

are independent and E[Xn] = 0, it follows that

V[SN ] =
∑

0⩽n⩽N

|an|2,

while, by the monotonicity of Lp norms in probability spaces,∑
0⩽n⩽N

E[|anXn − E(anXn)|2+δ] ⩽
∑

0⩽n⩽N

|an|2+δ.

From the hypotheses on {aj}j⩾0, it is now immediate that

lim
n→∞

1

V[SN ]2+δ

∑
0⩽n⩽N

E[|anXn − E(anXn)|2+δ] = 0,

verifying Lyapunov’s criterion for the central limit theorem (see, for example, [9,

Theorem 27.3]). From this the real case of the lemma follows.

The circularly-symmetric complex case follows by applying the real case to the

real and imaginary parts of Xn. The variance of ℜ(Xn),ℑ(Xn) will now be 1/2

instead of 1. This is because, V[ℜ(Xn)] = V[ℑ(Xn)] and E[ℜ(Xn)] = E[ℑ(Xn)]

due to circular-symmetry, and hence

1 = V[Xn] = E[|ℜ(Xn)|2 + |ℑ(Xn)|2] = V[ℜ(Xn)] + V[ℑ(Xn)] = 2V[ℜ(Xn)].

One may rescale the random variable by incorporating this factor into the coef-

ficients an. This implies that Xn converges to a complex normal. The indepen-

dence of the real and imaginary parts of this normal follows from the circular-

symmetry of Xn, as the limit itself must be circularly-symmetric. This completes

the proof.
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Now, by recalling the ideas behind the Bohr correspondence, one can see that

if α is transcendental, then the set in (1.2) is linearly independent over Q, and

hence the Kronecker–Weyl theorem tells us that as T → ∞,

{t ∈ [T, 2T ] 7→ (n + α)−it}0⩽n⩽N
d−−→ {Xn}0⩽n⩽N ,

where the Xn are i.i.d. random variables taking values uniformly on S1, and hence

are circularly-symmetric with mean 0 and variance 1.

From this limit in distribution, we find that

Pk(N ;α) = E
[∣∣∣ ∑

0⩽n⩽N

Xn

(n + α)1/2

∣∣∣2k].
However, an application of Lemma 4.2.1 with an = (n + α)−1/2 and any δ > 0

tells us that ∑
0⩽n⩽N

Xn

(n + α)1/2
,

is essentially normal with mean 0 and variance logN as N → ∞, from which we

conclude that

Pk(N ;α) ∼ k!(logN)k,

as desired.

4.3 Proof of Theorem 4.1.1

The case in which α ∈ C is either transcendental, or else is algebraic of degree

d ⩾ k over Q follows from the argument presented in the introduction to this

chapter. We present the argument here slightly differently to set the stage for the

case in which d < k.
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We rewrite the equation (4.6) by using elementary symmetric polynomials

σj(z) ∈ Z[z1, . . . , zk]. These may be defined for j ⩾ 0 by means of the generating

function identity
k∑

j=0

σj(z)tk−j =
k∏

i=1

(t + zi).

The equation (4.6) may thus be rewritten in the form

k∑
j=0

σj(x)αk−j =
k∑

j=0

σj(y)αk−j.

Since σ0(x) = 1 = σ0(y), we find that

k∑
j=1

(σj(x) − σj(y))αk−j = 0. (4.7)

In our present situation with α either transcendental, or else algebraic of degree

d ⩾ k over Q, the complex numbers 1, α, . . . , αk−1 are linearly independent over

Q. Then it follows from (4.7) that σj(x) = σj(y) (1 ⩽ j ⩽ k). In particular, over

the ring Z[t] one obtains the polynomial identity

k∏
j=1

(t− xj) =
k∏

j=1

(t− yj). (4.8)

The polynomial relation (4.8) implies that left and right hand sides must have

the same zeros with identical multiplicities. Hence (x1, . . . , xk) must be a permu-

tation of (y1, . . . , yk). The conclusion∑
ν∈Z[α]

τk(ν;N,α)2 = Tk(N)

is then immediate on recalling the Diophantine interpretation (4.6) of the mean

value on the left hand side.

We now assume that α ∈ C is an algebraic number of degree d over Q, with

2 ⩽ d < k. In this situation the equation (4.6) simplifies, since αd may be

expressed as a Q-linear combination of 1, α, . . . , αd−1. However, the equation
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(4.7) no longer delivers k independent polynomial equations, but instead d such

equations with d < k. The previous strategy is thus no longer applicable.

Let x,y be an integral solution of the equation (4.6) with 1 ⩽ xi, yi ⩽ X

(1 ⩽ i ⩽ k), in which (x1, . . . , xk) is not a permutation of (y1, . . . , yk). Observe

first that if xi = yj for any indices i and j with 1 ⩽ i, j ⩽ k, then we may cancel

the factors xi + α and yj + α, respectively, from the left and right hand sides of

(4.6). It thus suffices to establish the conclusion of Theorem 4.1.1 with k replaced

by k−1. Here, of course, if d ⩾ k−1, then the desired conclusion follows from the

previous discussion. By repeatedly cancelling pairs of equal factors in this way, it

is apparent that there is no loss of generality in supposing henceforth that xi = yj

for no indices i and j with 1 ⩽ i, j ⩽ k.

Consider the polynomial

F (t) =
k∏

i=1

(t + xi) −
k∏

i=1

(t + yi). (4.9)

This polynomial has degree at most k−1, and so for suitable integers aj = aj(x,y)

(0 ⩽ j ⩽ k − 1), we may write

F (t) = a0 + a1t + . . . + ak−1t
k−1.

Note that for 0 ⩽ j ⩽ k − 1, one has

|aj| = |σk−j(x) − σk−j(y)| ≪ Nk−j. (4.10)

Next, denote by mα ∈ Z[t] the minimal polynomial of α over Z. Then mα is

irreducible of degree d over Z, and if mα has leading coefficient cd ̸= 0, then

c−1
d mα ∈ Q[t] is the usual minimal polynomial of α over Q. We may write

mα(t) = c0 + c1t + . . . + cdt
d,

in which |cj| ≪α 1 (0 ⩽ j ⩽ d). We observe from (4.6) and (4.9) that

F (α) =
k∏

i=1

(xi + α) −
k∏

i=1

(yi + α) = 0,
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whence mα(t) divides F (t). Consequently, there is a polynomial

Ψ(t) = Ψα(t;x,y) ∈ Z[t]

having the property that

F (t) = mα(t)Ψ(t). (4.11)

Since deg(Ψ) = deg(F ) − deg(mα) ⩽ k − 1 − d, we may write

Ψ(t) = b0 + b1t + . . . + bk−1−dt
k−1−d,

where bm ∈ Z (0 ⩽ m ⩽ k−1−d). Our immediate goal is to bound the coefficients

bm.

We claim that for 0 ⩽ m ⩽ k − d− 1, one has

|bm| ≪ Nk−d−m. (4.12)

This we establish by considering the formal Laurent series for mα(t)−1. Thus, we

have mα(t)−1 = e(t) ∈ Q((1/t)), where for suitable rational coefficients ej ∈ Q

(j ⩾ d) one has

e(t) =
∞∑
j=d

ejt
−j =

1

cdtd
(1 + c−1

d cd−1t
−1 + . . . + c−1

d c0t
−d)−1.

Note here that cd ̸= 0. Further, since c0, . . . , cd depend at most on α, it follows

from a Taylor series expansion that ej ≪α,j 1. We may therefore infer from (4.11)

that Ψ(t) = e(t)F (t), whence

k−1−d∑
m=0

bmt
m =

(
∞∑
j=d

ejt
−j

)(
k−1∑
i=0

ait
i

)
.

In view of the bounds (4.10) and ej ≪α,j 1, we deduce that for 0 ⩽ m ⩽ k− 1− d

one has

bm = edam+d + ed+1am+d+1 + . . . + ek−1−mak−1

≪ Nk−d−m + Nk−d−m−1 + . . . + N ≪ Nk−d−m.
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This confirms the bound (4.12). We may suppose henceforth that there is a

positive number C = C(k, α) having the property that

|bm| ⩽ CNk−d−m (0 ⩽ m ⩽ k − d− 1). (4.13)

We now arrive at the polynomial identity that does the heavy lifting in the

proof of Theorem 4.1.1.

Lemma 4.3.1. Suppose that x,y is an integral solution of the equation (4.6)

with 1 ⩽ xi, yi ⩽ N (1 ⩽ i ⩽ k), in which xi = yj for no indices i and j with

1 ⩽ i, j ⩽ k. Then, for each index j with 1 ⩽ j ⩽ k, there is an integer ρj, with

1 ⩽ |ρj| ⩽ kCNk−d, having the property that

k∏
i=1

(xi − yj) = ρjmα(−yj).

Proof. Recalling (4.9) and (4.11), we see that

F (−yj) =
k∏

i=1

(xi − yj) = mα(−yj)Ψ(−yj).

But in view of (4.13), one has

|Ψ(−yj)| ⩽
k−1−d∑
m=0

|bm|ymj ⩽ (k − d)CNk−d.

Thus, there is an integer ρj = Ψ(−yj) with |ρj| ⩽ kCNk−d for which

k∏
i=1

(xi − yj) = mα(−yj)ρj.

Notice here that since the left hand side is a non-zero integer, then so too are both

factors on the right hand side. The conclusion of the lemma follows.

We may now complete the proof of Theorem 4.1.1. Our previous discussion

ensures that it is sufficient to count solutions x,y of (4.6) with 1 ⩽ xi, yi ⩽ N

(1 ⩽ i ⩽ k), in which xi = yj for no indices i and j with 1 ⩽ i, j ⩽ k. Given
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any such solution, an application of Lemma 4.3.1 with j = k shows that, for some

integer ρk with 1 ⩽ |ρk| ⩽ kCNk−d, one has

k∏
i=1

(xi − yk) = ρkmα(−yk). (4.14)

Fix any one of the O(N) possible choices for yk, and likewise any one of the

O(Nk−d) possible choices for ρk. Then we see from (4.14) that each of the factors

xi − yk (1 ⩽ i ⩽ k) must be a divisor of the non-zero integer M = ρkmα(−yk). It

therefore follows from an elementary estimate for the divisor function that there

are O(M ϵ) possible choices for xi−yk (1 ⩽ i ⩽ k). Fix any one such choice. Then

since yk has already been fixed, we see that x1, . . . , xk and yk are now all fixed.

At this point we return to the equation (4.6). By taking norms from Q(α)

down to Q, we see that

k∏
i=1

mα(−yi) =
k∏

i=1

mα(−xi).

The right hand side here is already fixed and non-zero. A divisor function estimate

therefore shows that there are O(N ϵ) possible choices for integers n1, . . . , nk having

the property that

mα(−yi) = ni (1 ⩽ i ⩽ k).

Fixing any one such choice for the k-tuple n, we find that when 1 ⩽ i ⩽ k,

there are at most d choices for the integer solution yi of the polynomial equation

mα(−t) = ni. Altogether then, the number of possible choices for x and y given a

fixed choice for yk and ρk is O((MN)ϵ). Thus we conclude that the total number

of possible choices for x and y is O(Nk−d+1+ϵ), and hence∑
ν∈Z[α]

τk(ν;N,α)2 − Tk(N) ≪ Nk−d+1+ϵ.

This completes the proof of Theorem 4.1.1.
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