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Abstract

We will present a condensed proof of the Bott Periodicity
Theorem for the unitary group U following John Milnor’s
classic Morse Theory. There are many documents on the
internet which already purport to do this (and do so very well
in my estimation), but I nevertheless will attempt to give a
summary of the result.
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1 The Basics
The original proof of the Periodicity Theorem relies on a deep result
of Marston Morse’s calculus of variations, the (Morse) Index
Theorem. The proof of this theorem, however, goes beyond the
scope of this document, the reader is welcome to read the relevant
section from Milnor or indeed Morse’s own paper titled The Index
Theorem in the Calculus of Variations.

Perhaps the first thing we should set about doing is introducing
the main character of our story; this will be the unitary group. The
unitary group of degree n (here denoted U(n)) is the set of all
unitary matrices; that is, the set of all A ∈ GL(n,C) such that
AA∗ = I where A∗ is the conjugate of the transpose of A (conjugate
transpose for short).

This set, U(n), it can be shown, is a smooth manifold with (real)
dimension n2 (viewed as a subset of Cn2 , U(n) is the preimage of the
identity I under the map U 7→ UU∗ and, under the operator norm,
‖U‖ = 1 for every U ∈ U(n) which, by the Heine–Borel Theorem,
implies that U(n) is compact). Moreover, U(n) is in fact a Lie group;
that is, a smooth manifold and a group such that the group laws
multiplication and inversion are smooth (infinitely differentiable, and
hence so-called diffeomorphisms of itself).

The Lie algebra of U(n), here denoted, u(n) is the set of all
skew-Hermitian matrices; that is, all matrices A ∈M(n,C) such
that A+ A∗ = 0 (notice that A need no longer be invertible).

It is well established, and we shall not have the time to deal
with it here, that any compact Lie group can be equipped with a
bi-invariant (Riemannian) metric. It is standard, although not
at all trivial, that a the so-called geodesics of Lie group equipped
with a bi-invariant metric correspond to one-parameter subgroups
φ(t) = exp(tA) where A is taken from the Lie algebra of our Lie group.
The bi-invariant metric which we shall equip U(m) with is the standard

〈A,B〉 ··= Re(tr(AB∗)) for A,B ∈ u(m). (1)
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It can be shown, with little difficulty, that this map really is positive
definite and hence, describes a Riemannian metric on U(m)

The exponential map, denoted exp in the last paragraph, is
quite a deal different from the exponential function you known and
love. In our particular case, it is enough to say that the exponential
map is defined (formally) by its Taylor series expansion as follows

exp(A) = I + A+ 1
2A

2 + 1
6A

3 + · · · . (2)

2 Fiber Bundles
In elementary topology, just like in abstract algebra, there is a notion
of sameness which serves to tell fundamentally different spaces apart.
A circle is visibly different from an open interval, but how can we make
this rigorous? This is where the notion of homeomorphism comes
in. A homeomorphism is a continuous map h between topological
spaces, say, X and Y with a continuous inverse. After the correct
formalism has been established, we develop properties (invariants)
of spaces which are preserved under homeomorphisms so that we
may determine when, say, X and Y are distinct as (topological)
spaces; for example, X might be compact and Y not. A very powerful
invariant are the so-called connected components of a space. It is
an exercise in elementary topology that the connected components
of a manifold coincide with the path-components of said manifold.
Therefore, it makes sense to ask: Given a manifold M , what are the
path-components π0(M) of M? Given a point p ∈ M , let π0(M, p)
denote the set of path-components of M with the path-component of
p singled out. Also corresponding to said point, let Ωp(M) denote the
space of maps from the unit circle S1 ··= {|z| = 1} ⊂ C sending 1 to
p, made into a topological space with the so-called compact-open
topology. The path-components of this loop space Ωp(M) we shall
call π1(M, p) (this is precisely the fundamental group of M) the
set π0(Ωp(M), p̄) where p̄ is the constant map sending S1 to p. We
may similarly define the higher homotopy groups recursively as
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folows
πk+1(M, p) ··= πk(ΩpM, p̄).

A fiber bundle, which we shall denote in the following style

F −→ E −→ B,

(in the style of Wikipedia) is a continuous surjection p from the total
space E to the base space B such that every point b ∈ B has a
neighborhood U such that p−1(U) is homeomorphic U × F . That
is, a fiber bundles is locally a product space. A typical example of
this where the bundle is nontrivial is the Möbius strip.

A basic result from the theory of fiber bundles is that if the base
space B is path connected, such a fiber bundle gives rise to a long
exact sequence of homotopy groups

· · · −→ πn(F ) −→ πn(E) −→ πn(B) −→ πn−1(F ) −→ · · · . (3)

(For a proof see the following Wikipedia page: Long exact sequence
of a fibration.)

For the proof of the theorem, it will be necessary to look at the
stable unitary group U which is the direct limit of the finite-
dimensional unitary groups U(n) under the inclusion U(n) ↪→ U(m)
given by the mapping A 7→ ( 0 1

A 0 ); that is,

U ··= dir lim
n

U(n) ··=
⊔
n

U(n)/∼,

where for Aj ∈ U(j), Ak ∈ U(k), Aj ∼ Ak if there is some l ∈ N such
that ιjl(Aj) = ιkl(Ak) (the ι are compositions of inclusions). You can
think of this space as the irredundant union of all the U(n).

2.1 First fiber bundle
The inclusion i : U(n)→ U(n+ 1) given by A 7→ ( 1 0

0 A ) and the map
j : U(n+ 1)→ S2n+1 ⊂ Cn+1 which takes a matrix to its first column,
gives a fiber bundle

· · · −→ πi+1S
2n+1 −→ πi(U(n)) −→ πi(U(n+1)) −→ πi(S2n+1) −→ · · ·
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which, by Equation (3) gives

πi(U(n)) ∼= πi(U(n+ 1)) ∼= πi(U(n+ 2)) ∼= · · · (4)

since πi(S2n+1) = 0 for 2n+ 1 > i.

2.2 Second Fiber Bundle
We define the (complex) Stiefel manifold, which we shall denote
V (m,Cn), as the space of m-tuples of orthonormal vectors in Cn

which called frames.
Then U(n) acts transitively on V (m,Cn) by matrix multiplica-

tion (anym frame can be taken to any otherm frame by an appropriate
choice of unitary matrix). Moreover, an m-tuple of Cn is fixed by
an element of U(n) which acts non-trivially only on the complemen-
tary n−m frame; that is, the action has a stabilizer isomorphic to
U(n−m). Hence we have a fiber bundle U(n−m)→ U(n)→ V (m,Cn)
which, by Equation (3) yields

πi(V (m,Cn)) = 0 for i < 2(m− n). (5)

2.3 Third Fiber Bundle
We define the (complex) Grassmannian, denoted Gr(m,Cn) as
the collection of m dimensional subspaces of Cn where m ≤ n.

Consider the map from V (m,Cn) to Gr(m,Cn) which sends an m-
frame to the m-dimensional subspace spanned by it. The fibers of this
map is the collection of m-frames spanning the same m-dimensional
subspace, which, can be shown, is isomorphic to U(m). Hence, we
have a fiber bundle U(m) → V (m,Cn) → Gr(m,Cn). By Equation
(3), this yields

πi−1(U(m)) ∼= πi(Gr(m,Cn)) for i < 2(n−m). (6)
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2.4 Fourth Fiber Bundle
The last bundle we are going to need comes from the special unitary
group SU(m) which is a subgroup of U(m) consisting of matrices
with determinant 1.

The determinant map det : U(m)→ S1 ⊂ C gives a fiber bundle
SU(m)→ U(m)→ S1 which by Equation (3) gives

πi(SU(m)) ∼= πi(U(m)) for i > 1

and hence
πi(SU) ∼= πi(U) for i > 1. (7)

3 Proof of the Periodicity Theorem
We have done most of the set up, now it is time to state our theorem

Theorem 1 (Bott’s Periodicity Theorem for U). For sufficiently large
n, πi−1(U(n)) ∼= πi+1(U(2n)) for i ≥ 1. In other words,

πi−1(U) ∼= πi+1(U).

Everything will now magically come together. Recall from Equa-
tion (6) and Equation (7) that

πi−1(U(m)) ∼= πi(Gr(m,Cn)) and πi+1(SU(2m)) ∼= πi+1(U(2m)).

All we need to do to prove Theorem 1 is show that

πi(Gr(m,C2m)) ∼= πi+1(SU(2m)).

This is where the voodoo magic from calculus of variations will play
a big role.

Rather than prove this equality directly, we can reduce to the
space of minimal geodesics in SU(2m) (this is a reduced version of the
path-space more commonly called loop space) from I to −I. The
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customary notation for this space is Ω(SU(2m); I,−I), but we shall
simply denoted by Ω(I,−I).

We will argue, in two steps, that

πi(Gr(m,C2m)) ∼= πi(Ω(I,−I))

and
πi(Ω(I,−I)) ∼= πi+1(SU(2m)).

3.1 The first equivalence
We will prove something much stronger in fact,

Lemma 2. The spaces Gr(m,C2m) and Ω(I,−I) are homeomorphic.

Proof. We more or less follow Milnor’s discussion. The Lie algebra
su(2m) of SU(2m) is comprised of 2m-by-2m matrices A such that
A+ A∗ = 0 and tr(A) = 0.

As we have already discussed, the exponential map exp takes
vectors in the Lie algebra to elements of the Lie group, and moreover
geodesics on the Lie group correspond to one-parameter subgroups,
i.e., they are the maps γ(t) = exp(tA) for A ∈ su(2m).

We are interested in finding minimal geodesics from I to −I,
i.e., γ starting at I such that γ(1) = −I with γ having the shortest
length possible (with respect to the metric given by Equation (1)).
From linear algebra, we know that for any A ∈ su(2m) we can find a
unitary matrix T such that TAT−1 is diagonal and for A such that
exp(A) = −I, since exp(TAT−1) = T exp(A)T−1 = T (−I)T−1 = −I,
it suffices to consider diagonal matrices.

Since any diagonal A ∈ su(2m) is a skew-symmetric Hermitian
matrix, it must have entries with real part equal to 0. Since exp(A) =
−I we must also have that each entry on the diagonal, say iai must
be of the form ikiπ for ki odd and ∑2m

i=1 ki = 0.
Therefore, from (1), we deduce that any such A determines a

geodesic of length π
√
k2

1 + · · ·+ k2
2m. To minimize this, we must have
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ki = ±1 for i = 1, . . . , 2m and at least half of these must be positive
and half negative.

We conclude that the minimal geodesics from I to −I in SU(2m)
are of the form exp(tA) where A is a diagonal matrices with half
of the entries equal to iπ and the other half −iπ. Such a matrix is
uniquely determined by the eigenspace for just one of these, say, iπ
which is an m-dimensional subspace of C2m.

The homeomorphism is the map which sends such a geodesic to
its corresponding eigenspace in C2m. This gives a well-defined map
to Gr(m,C2m). 2

3.2 The second equality
The previous equality followed very quickly from simple observation.
The next equality requires some very deep results, in particular, we
will use a corollary of Morse’s Index Theorem, which states that

Theorem 3. For a Riemannian manifold M , if the space of minimal
geodesics from p to q is a topological manifold, denoted Ω(p, q), and
if every non-minimal geodesic from p to q has index ≥ λ0, then
πi(Ω(p, q)) ∼= πi+1(M) for i = 0, . . . , λ0 − 2.

The index referenced here is the so-called Morse index and is
defined as follows. We say that two points p and q along a curve γ are
conjugate points if there is a non-zero Jacobi field J that vanishes
at p and q. The multiplicity of the conjugate points is the dimension
of the vector space of all such J .

The Jacobi field J is a solution to the second-order ODE
D2

dt
J +R( d

dt
γ, J) d

dt
γ = 0,

where D/dt denotes the covariant derivative and R the curvature
tensor.

To prove that πi(Ω(I,−I) ∼= πi+1(SU(2m)), all we need to show is
that every non-minimal geodesic from I to −I has index greater than
or equal to 2m+ 2, so that, for sufficiently large m, πi(Ω(I,−I)) ∼=
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πi+1(SU(2m)) concluding the proof of Bott’s Periodicity Theorem for
U. This however is very laborious and it makes it a good place for us
to stop.

4 The Homotopy Groups of U
We finish off by listing the homotopy groups of U as obtained using
Bott Periodicity. From Theorem 1, πi(U) is completely determined
by π0(U) and π1(U). From Equation (4),

π0(U) ∼= π0(U(1)) and π1(U) ∼= π1(U(1)).

Since U(1) ≈ S1, π0(U(1)) = 0 (since S1 is path-connected) and
π1(U(1)) = Z (from elementary theory of covering spaces). Therefore,

πn(U) ∼=

0 for n even,
Z for n odd.
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