MA161 Quiz 10 Solutions

TA: Carlos Salinas

February 15, 2018

Problem 10.1. Find the exact values of the following expressions:
(a) $\sin (\pi / 6)$,
(c) $\arctan (1 / \sqrt{3})$,
(b) $\cos (\pi / 6)$,
(d) $\arcsin (1 / 2)$.

Solution. For part (a) and (b) $\sin (\pi / 6)=1 / 2$ and $\cos (\pi / 6)=\sqrt{3} / 2$ (these are just values you should know-see the Wikipedia image of the Unit Circle for example). For parts (c) and (d), you can use what you know to determine the values of the expressions. For example, in the case of (c),

$$
\frac{1}{\sqrt{3}}=\frac{1 / 2}{\sqrt{3} / 2}=\frac{\sin (\pi / 6)}{\cos (\pi / 6)}=\tan (\pi / 6)
$$

so $\arctan (1 / \sqrt{3})=\arctan (\tan (\pi / 6))=\pi / 6$ by definition. Similarly for (d), $\sin (\pi / 6)=1 / 2$ so $\arcsin (1 / 2)=\arcsin (\sin (\pi / 6))=\pi / 6$.

Problem 10.2. Find an equation of the tangent line to the curve

$$
y=\sec (x) \text { at the point }(\pi / 3,2) .
$$

Solution. Remember that if we know the slope m and a point $\left(x_{0}, y_{0}\right)$ on the tangent line, then the tangent line is

$$
y-y_{0}=m\left(x-x_{0}\right) ;
$$

do not forget this. We already have our x_{0} and y_{0}, they are $\pi / 3$ and 2 , respectively. All we need to do now is find m, which we do below

$$
y^{\prime}=(\sec x)^{\prime}=\sec x \tan x
$$

so

$$
y^{\prime}(\pi / 6)=\sec (\pi / 3) \tan (\pi / 3)=2 \sqrt{3}
$$

Therefore, the tangent line is

$$
y-2=2 \sqrt{3}(x-\pi / 3)
$$

Problem 10.3. Simplify the expression

$$
\tan (\arcsin (x))
$$

Solution. This problem was verbatim an exercise from Lesson 14. The Pythagorean Identity is very important and you should remember it; in case you do not, here it is

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

Now, remember that $\tan (x)=\sin (x) / \cos (x)$ and also, from the Pythagorean Identity, $\cos (x)=\sqrt{1-\sin ^{2}(x)}$ so

$$
\tan (\arcsin (x))=\frac{\sin (\arcsin (x))}{\cos (\arcsin (x))}=\frac{\sin (\arcsin (x))}{\sqrt{1+\sin ^{2}(\arcsin (x))}}
$$

But since sin and arcsin are inverses of each other,

$$
\frac{\sin (\arcsin (x))}{\sqrt{1-\sin ^{2}(\arcsin (x))}}=\frac{x}{\sqrt{1-x^{2}}}
$$

Problem 10.4. Find the limit

$$
\lim _{x \rightarrow \infty} x \sin (\pi / x)
$$

Solution. This may have been the trickiest problem in this quiz. Here is the method we were meant to follow. First, notice that

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

so if we make the substitution $u=1 / x$ to our original limit, we now have the equivalent limit

$$
\lim _{u \rightarrow 0} \frac{\sin (\pi u)}{u}
$$

But we only know that

$$
\lim _{t \rightarrow 0} \frac{\sin (a t)}{a t}=1
$$

so we have to multiply Equation (\star) by π / π to get it in the form above like so

$$
\lim _{u \rightarrow 0} \frac{\pi}{\pi} \cdot \frac{\sin (\pi u)}{u}=\pi\left(\lim _{u \rightarrow 0} \frac{\sin (\pi u)}{\pi u}\right)=\pi
$$

