MA161 Quiz 11 Solutions

TA: Carlos Salinas

February 20, 2018

Problem 11.1. The position for the movement of a particle is given by

$$
s(t)=\cos (2 t-2)-\sin (3 t-3)
$$

where the position s is measured in feet and t in second.
(a) Find the velocity of the particle after one second; i.e., at time $t=1$.
(b) Find the acceleration of the particle after one second.

Solution. Remember that the velocity is the first derivative of the position and acceleration the second. That is,

$$
\begin{aligned}
& v(t)=s^{\prime}(t)=-2 \sin (2 t-2)-3 \cos (3 t-3) \\
& a(t)=s^{\prime \prime}(t)=-4 \cos (2 t-2)+9 \sin (3 t-3)
\end{aligned}
$$

Then finding the quantities I asked for in parts (a) and (b) is a simple matter of plugging in $t=1$ into the equations above.

For (a), $v(1)=-3$ and for (b), $a(1)=-4$.
Problem 11.2. Suppose $a>0$ and the tangent line to $y=a^{x^{2}}$ at $x=1$ has slope $m=a$. What is a ?

Hint: Remember that a tangent line looks like $y-y_{0}=m\left(x-x_{0}\right)$.

Solution. You could have done this problem a number of ways. This is the way I intended you to do it. Write

$$
y=a^{x^{2}}=e^{x^{2} \ln (a)}
$$

Then, by the Chain Rule,

$$
y^{\prime}=e^{x^{2} \ln (a)}(2 x \ln (a))
$$

Now, I told you that $y^{\prime}(1)=a$ so

$$
a=y^{\prime}(1)=e^{1^{2} \ln (a)}(2 \cdot 1 \ln (a))=2 a \ln (a)
$$

Therefore $a=e^{1 / 2}$.
Problem 11.3. Find the derivative of $y=x^{\tan ^{-1}(x)}$.

Hint: The derivative of $\tan ^{-1}(x)$ is

$$
\left(\tan ^{-1}(x)\right)^{\prime}=\frac{1}{\left(x^{2}+1\right)}
$$

Solution. For this problem, we can use a similar method to the one we employed above. Write

$$
y=x^{\tan ^{-1}(x)}=e^{\tan ^{-1}(x) \ln (x)}
$$

Then explicitly do the Chain Rule. That is, write $g(u)=e^{u}$ and $h(v)=$ $\tan ^{-1}(v) \ln (v)$ for your functions in the composition. Then $y=g(h(x))$ and by the Product Rule,

$$
h^{\prime}(v)=\frac{\tan ^{-1}(v)}{v}+\frac{\ln (v)}{v^{2}+1}
$$

and from class $g^{\prime}(u)=e^{u}$ so putting these two together with the Chain Rule,

$$
y=g(h(x))^{\prime}=g^{\prime}(h(x)) h^{\prime}(x)=\left(\frac{\tan ^{-1}(x)}{x}+\frac{\ln (x)}{x^{2}+1}\right) e^{\tan ^{-1}(x) \ln (x)}
$$

