MA161 Quiz 13 Solutions

TA: Carlos Salinas

February 27, 2018

Problem 13.1. Let $f(x)=x^{2}+2^{x^{2}}$. Find $f^{\prime}(-1)$.

Solution. Using previously learned techniques from class, write

$$
f(x)=x^{2}+e^{x^{2} \ln (2)}
$$

Then

$$
f^{\prime}(x)=2 x+2 x \ln (2) 2^{x^{2}}
$$

Thus

$$
f^{\prime}(-1)=-2-2 \ln (2) \cdot 2=-2-4 \ln (2)
$$

Problem 13.2. Find an equation of the tangent line to the curve

$$
\ln (x y)=2 x^{2}-y-1
$$

at the point $(1,1)$.

Solution. Using indeterminate derivatives, write

$$
\begin{aligned}
\ln (x y) & =2 x^{2}-y-1 \\
\frac{x y^{\prime}+y}{x y} & =4 x-y^{\prime} \\
\frac{y^{\prime}}{y}+\frac{1}{x} & =4 x-y^{\prime} \\
\frac{y^{\prime}}{y}+y^{\prime} & =4 x-\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{1}{y}+1\right) y^{\prime} & =4 x-\frac{1}{x} \\
y^{\prime} & =\frac{4 x-\frac{1}{x}}{1+\frac{1}{y}} .
\end{aligned}
$$

Now, plug in $x=1, y=1$ into the equation to obtain the slope of the tangent line, which is

$$
m=\frac{4-1}{1+1}=\frac{3}{2} .
$$

Then, the tangent line itself is

$$
y-1=\frac{3}{2}(x-1) .
$$

Problem 13.3. Given that

$$
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{x^{2}+1},
$$

find the derivative of

$$
\tan ^{-1}\left(\frac{2}{x^{2}}\right)
$$

Solution. By the Chain Rule, with $f(u)=\tan ^{-1}(u)$ and $g(v)=2 x^{-2}$, we have

$$
(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{\left(\frac{2}{x^{2}}\right)^{2}+1} \cdot \frac{-4}{x^{3}} .
$$

