MA161 Quiz 17 Solutions

TA: Carlos Salinas

March 22, 2018

Problem 17.1. Find the absolute maximum and absolute minimum of $f(x)=x-\ln (9 x)$ on the interval $[1 / 2,2]$.

Solution. Most of us got this problem right. By the Extreme Value Theorem, we have to check at the critical points, i.e. where $f^{\prime}(x)=0$, and at the endpoints $x=1 / 2$ and $x=2$. So let us do just that. First,

$$
\begin{align*}
f(1 / 2) & =1 / 2-\ln (9 / 2), \tag{17.1}\\
f(2) & =2-\ln (18) . \tag{17.2}
\end{align*}
$$

What about the critical points? First we need to take the derivative as we now do:

$$
f^{\prime}(x)=1-\frac{9}{9 x}=1-\frac{1}{x} .
$$

The only place where the derivative is zero happens when $x=1$. Now we must check what happens at $x=1$. At $x=1$

$$
\begin{equation*}
f(1)=1-\ln (9) . \tag{17.3}
\end{equation*}
$$

The max was $2-\ln (18)$ and the min was $1-\ln (9)$.
Remark 1. It is difficult to determine which of Equations (17.1), (17.2), and (17.3) are the min and max, so I did not take off any points for mislabeling the extrema.

Here's a general method for dealing with logarithms. Let's look at Equations (17.1), (17.2), and (17.3). The first thing you should try to do when you come across a logarithm is try to see if you can write what is on the inside as a power or a product of numbers. In this case,

$$
\begin{aligned}
f(1 / 2) & =1 / 2-\ln (9 / 2) \\
& =1 / 2-(\ln (9)-\ln (2)) \\
& =1 / 2-\ln \left(3^{2}\right)+\ln (2), \\
& =1 / 2-2 \ln (3)+\ln (2), \\
f(2) & =2-\ln (18) \\
& =2-2 \ln (3)-\ln (2), \\
f(1) & =1-\ln (9) \\
& =1-2 \ln (3),
\end{aligned}
$$

Now here's another tip. To see which number between a and b is bigger, try to subtract them. For example

$$
f(1 / 2)-f(2)=1 / 2-2+2 \ln (2)=-3 / 2+2 \ln (2)
$$

Now $\ln (2) \approx 0.7$ so this number is negative, i.e. $f(2)$ is bigger than $f(1 / 2)$.

Problem 17.2. Find the absolute maximum and absolute minimum of $f(x)=\left(x^{2}-1\right)^{3}$ on the interval $[-1,5]$.

Solution. By the Extreme Value Theorem, we must check at the end points and where the derivative of f equals 0 . First, let us take the derivative

$$
\begin{equation*}
f^{\prime}(x)=6 x\left(x^{2}-1\right)^{2} . \tag{17.4}
\end{equation*}
$$

The zeros of Equation (17.4) happen at $x=0, \pm 1$. Luckily this means that we only have to check $x=-1$ once. Now, let us find all the
extrema.

$$
\begin{aligned}
f(-1) & =0, \\
f(1) & =0, \\
f(0) & =1, \\
f(5) & =24^{3} .
\end{aligned}
$$

Clearly $f(5)=24^{3}$ is our maximum and both $f(-1)=f(1)=0$ our minimum.

Problem 17.3. Let $f(x)=x+4 / x$. If we denote by M the absolute maximum of f on $[1,4]$ and by m the absolute minimum, what is their product Mm?

Solution. First let us find the derivative. The derivative of f is

$$
f^{\prime}(x)=1-\frac{4^{2}}{x}
$$

which has zero at $x=2$ and $x=-2$. Since $x=-2$ is outside our interval, which was [1,4], we disregard it. So the extrema are

$$
\begin{align*}
& f(1)=5, \\
& f(2)=4, \\
& f(4)=5 .
\end{align*}
$$

Then $M=5$ and $m=4$ so $M m=20$.

