MA161 Quiz 18 Solutions

TA: Carlos Salinas

March 22, 2018

Problem 18.1. Find all numbers c in the interval $[0,25]$ that satisfy the conclusions of Rolle's Theorem for the function $f(x)=\sqrt{x}-x / 5$.

Solution. Remember that Rolle's Theorem says that if f is differentiable on (a, b) and $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $a<c<b$. The problem at hand actually satisfies the conditions of Rolle's Theorem since $f(x)=\sqrt{x}-x / 5$ is differentiable on $[0,25]$ and $f(0)=f(25)=0$. Therefore, there must be a c between 0 and 5 such that $f^{\prime}(0)=0$. Let's find it:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2 \sqrt{x}}-\frac{1}{5} \\
0 & =\frac{1}{2 \sqrt{x}}-\frac{1}{5} \\
5 & =2 \sqrt{x} \\
\frac{5}{2} & =\sqrt{x} \\
\frac{25}{4} & =x .
\end{aligned}
$$

This is the only place where the derivative is zero.
Problem 18.2. Suppose that $2 \leq f^{\prime}(x) \leq 4$ for all x. What is the maximum possible value of $f(4)-f(2)$?

Solution. By the Mean Value Theorem, we have

$$
f^{\prime}(c)=\frac{f(4)-f(2)}{4-2}
$$

for some $2<c<4$. But we know that $2 \leq f^{\prime}(x) \leq 4$ so that

$$
2 \leq \frac{f(4)-f(2)}{4-2} \leq 4
$$

Therefore

$$
f(4)-f(2) \leq 8
$$

Problem 18.3. If f is continuous on $[1,6]$ and differentiable on $(1,6)$ with $f(6)=13$ and $f^{\prime}(x) \geq 2$ for $1<x<6$, what is the largest possible value for $f(1)$?

Solution. There was a typo in the original problem. In the original problem, I had " $f(x) \geq 2$ " when I should have written " $f(x) \leq 2$."

$$
2 \leq \frac{f(6)-f(1)}{6-1}
$$

Therefore,

$$
10 \leq f(6)-f(1)
$$

So

$$
3=f(6)-10 \geq f(1)
$$

