MA161 Quiz 19 Solutions

TA: Carlos Salinas

March 29, 2018

Problem 19.1. Consider the image below

Find the intervals on which
(a) f is increasing;
(c) f is concave upward;
(b) f is decreasing;
(d) f is concave downward.

Solution. For part (a), f is increasing on $(2,3) \cup(5,7)$.
For part (b), f is decreasing on $(0,2) \cup(3,5)$.
For part (c), f is concave upward on $(4,6)$.
For part $(\mathrm{d}), f$ is concave downward on $(0,2) \cup(2,4) \cup(6,7)$.
\odot
Problem 19.2. Suppose that $f^{\prime}(x)=(x+2)(x-5)(x-6)$. Determine on what intervals f is increasing?

Solution. The best way to solve this problem is to first determine where the zeros of the derivative are; that is why it was given to you factored! The zeros are, by inspection,
$x=-2,5,6$ so we have to check the intervals $(-\infty,-2),(-2,5),(5,6),(6, \infty)$. Pick a number from each interval, for example, $-3,0,5.5,7$ and check their values:

$$
\begin{aligned}
f^{\prime}(-3) & =(-1)(-8)(-9)<0, \\
f^{\prime}(0) & =2(-5)(-6)>0, \\
f^{\prime}(5.5) & =7.5 \cdot 2.5(-0.5)<0, \\
f^{\prime}(7) & =9 \cdot 2 \cdot 1>0 .
\end{aligned}
$$

Therefore, it is increasing on $(-2,5) \cup(6, \infty)$.
\odot

Problem 19.3. Suppose $f^{\prime \prime}(x)=e^{x}$ and $f^{\prime}(1)=0$. What can you say about $f(1)$? Hint: Choose one of the following options
(a) f has an inflection point at 1
(c) f has a local maximum at 1
(b) f has a local minimum at 1
(d) none of the above.

Solution. By the Second Derivative Test, since $f^{\prime \prime}(1)=e^{1} \approx 2.7>0, f(1)$ must be a local minimum.

