MA161 Quiz 21

TA: Carlos Salinas

April 10, 2018

Problem 21.1. What is the maximum vertical distance between the line $y=x+12$ and the parabola $y=x^{2}$ for $-3 \leq x \leq 4$?

Solution. The distance from a point on $y=x+12$ and $y=x^{2}$ is given by the distance formula

$$
\begin{aligned}
d & =\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}} \\
& =\sqrt{(x-x)^{2}+\left(x^{2}-x-12\right)^{2}} \\
& =\left|x^{2}-x-12\right| .
\end{aligned}
$$

Since x is between -3 and 4 and $x^{2}-x-12$ is positive there, we are free to drop the absolute value. Then, to find the maximum distance, we have to take the derivative

$$
d^{\prime}=2 x-1
$$

Therefore, $x=1 / 2$ is a possible candidate. Now we use the Extreme Value Theorem, which tells us that the extrema (minima and maxima) happen at the endpoints and at the critical points. That is,

$$
d(-3)=6, \quad d(4)=0, \quad d(1 / 2)=11.25
$$

Therefore, the maximum happens at $d(1 / 2)=11.25$.
Problem 21.2. A box with a square base and open top must have a volume of 62500 cm^{3}. Find the dimensions of the box that minimize the amount of material used.

Solution. The volume of the box is

$$
V=62500=x^{2} h
$$

and therefore $h=62500 / x^{2}$. Now, we want to minimize the material used, which is the same as minimizing the surface area which is $S=x^{2}+4 x h$. By the equation above,

$$
S=x^{2}+\frac{250000 x}{x^{2}} .
$$

To minimize this value, we must take a derivative, as we now do

$$
S^{\prime}=2 x+\frac{250000}{x^{2}}=0
$$

Thus,

$$
2 x^{3}-250000=0
$$

Therefore,

$$
x=\frac{\sqrt[3]{250000}}{2}
$$

And so,

$$
h=\frac{125000}{\sqrt[3]{250000}}
$$

