MA161 Quiz 22

TA: Carlos Salinas

April 10, 2018

Problem 22.1. A rectangle is formed with one corner at $(0,0)$ and the opposite corner on the graph of $y=-\ln (x)$, where $0<x<1$. What is the largest possible area of such a rectangle? Hint: Use the following picture to guide you:

Solution. The length of the sides of the rectangle are x and $f(x)$ so

$$
A(x)=x f(x)=-x \ln (x) .
$$

To optimize this, we need to find the critical points, as we now do

$$
A^{\prime}(x)=-1-\ln (x) .
$$

For this to equal zero, we must have $\ln (x)=-1$ which happens when $x=e^{-1}$. Therefore, the largest possible area is

$$
A=-e^{-1} \ln \left(e^{-1}\right)=e^{-1}
$$

How do we know that this is the maximum? By the Second Derivative Test,

$$
A^{\prime \prime}(x)=-\frac{1}{x}
$$

so $A^{\prime \prime}\left(e^{-1}\right)=-e<0$ which implies that $A\left(e^{-1}\right)$ is a local maximum.
Problem 22.2. Find the antiderivatives of the following functions:
(a) $f(x)=\frac{1}{2} x^{2}-2 x+5$;
(c) $g(t)=\frac{7+t+t^{2}}{\sqrt{t}}$;
(b) $f(x)=x(3-x)^{2}$;
(d) $g(t)=2 \sqrt{t}+8 \cos t$

For part (a), we have

$$
F(x)=\frac{1}{6} x^{3}-x^{2}+5 x+C .
$$

For part (b), $f(x)=x(3-x)^{2}=x\left(x^{2}-6 x+9\right)=x^{3}-6 x^{2}+9 x$ so

$$
F(x)=\frac{1}{4} x^{4}-2 x^{3}+\frac{9}{2} x^{2}+C
$$

For part $(\mathrm{c}), g(t)=7 t^{-1 / 2}+t^{1 / 2}+t^{3 / 2}$ so

$$
G(t)=14 t^{1 / 2}+\frac{2}{3} t^{3 / 2}+\frac{2}{5} t^{5 / 2}+C .
$$

For part (d),

$$
G(t)=\frac{4}{3} t^{3 / 2}+8 \sin t
$$

