MA161 Quiz 23 Solutions

TA: Carlos Salinas

April 17, 2018

Problem 23.1. The velocity of a particle at various times is given in the following table:

time t in s	0	0.25	0.5	0.75	1
velocity $v(t)$ in m / s	3	2	3	4	5

Estimate the distance traveled by the particle from time $t=0$ to $t=1$ with a right Riemann sum.

Solution. First, from the table we can deduce the information: $\Delta t=0.25, t_{0}=0$, $t_{1}=0.25, t_{2}=0.5, t_{3}=0.75, t_{4}=1$, and $v\left(t_{0}\right)=3, v\left(t_{1}\right)=2, v\left(t_{2}\right)=3, v\left(t_{3}\right)=4$, $v\left(t_{4}\right)=5$. Therefore, using right Riemann sums, the approximate distance traveled is

$$
\text { dist. } \approx \sum_{i=1}^{n} v\left(t_{i}\right) \Delta t=0.25(2+3+4+5)=\frac{14}{4}=\frac{7}{2}=3.5 \text {. }
$$

Problem 23.2. Estimate

$$
\int_{0}^{\pi} \sin (x) d x
$$

using a right Riemann sum with $n=4$ rectangles.

Solution. First, we note that $\Delta x=(\pi-0) / 4=\pi / 4$. Then, $x_{0}=0, x_{1}=\pi / 4$, $x_{2}=\pi / 2, x_{3}=3 \pi / 4, x_{4}=\pi$. Therefore, the approximation of the integral using right Riemann sum with $n=4$ is

$$
\int_{0}^{\pi} \sin (x) d x \approx \frac{\pi}{4}(\sin (\pi / 4)+\sin (\pi / 2)+\sin (3 \pi / 4)+\sin (\pi))=\frac{\pi}{4}(1+\sqrt{2})
$$

Problem 23.3. Find

$$
\int_{0}^{1} x-\sqrt{1-x^{2}} d x
$$

by interpreting it in terms of areas.

Solution. To do this problem you have to first separate the integrals like so

$$
\int_{0}^{1} x-\sqrt{1-x^{2}} d x=\underbrace{\int_{0}^{1} x d x}_{I_{1}}-\underbrace{\int_{0}^{1} \sqrt{1-x^{2}} d x}_{I_{2}}
$$

Then the integral we are after is the difference $I_{1}-I_{2}$. To find I_{1} and I_{2} we just have to draw the graphs of x and $\sqrt{1-x^{2}}$ respectively. They are: for x

and for $\sqrt{1-x^{2}}$

It is clear that in the first image, the area under the curve $I_{1}=1 / 2$ (from the area of a triangle which is half of the base times the height) and $I_{2}=\pi / 4$ since, as the image shows, I_{2} is a quarter the area of a circle with radius $r=1$. Therefore,

$$
\int_{0}^{1} x-\sqrt{1-x^{2}} d x=I_{1}-I_{2}=\frac{1}{2}-\frac{\pi}{4} .
$$

