MA 162 Exam 2 Solutions July 9, 2019

Problem 1. Given $a_{n}=\frac{2 n+3}{4-n}$, then
Solution. By l'Hôpital's rule,

$$
\lim _{n} a_{n}=\lim _{n} \frac{2}{-1}=-2
$$

so the sequence converges.
But because the sequence converges to a nonzero real number, the series $\sum_{n} a_{n}$ must diverge by the quick test for divergence.
Problem 2. Let $f(x)$ be a function defined for $x \geq 1$, such that $1 / \sqrt{2} \leq$ $f(x) \leq 1$ for all $x \geq 1$. What can be said about the series

$$
S_{1}=\sum_{k=1}^{\infty} \frac{f(k)}{\sqrt{k}}, \quad S_{2}=\sum_{k=1}^{\infty} \frac{f(k)}{k^{2}} ?
$$

Solution. By the squeeze theorem for series, for S_{1}

$$
\sum_{k=1}^{\infty} \frac{1 / \sqrt{k}}{\sqrt{k}}=\sum_{k=1}^{\infty} \frac{1}{k} \leq S_{1} \leq \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}},
$$

so S_{1} diverges since the series to the left of S_{1} diverges (it is the harmonic series). For S_{2},

$$
\sum_{k=1}^{\infty} \frac{1 / \sqrt{k}}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{k^{5 / 2}} \leq S_{2} \leq \sum_{k=1}^{\infty} \frac{1}{k^{2}},
$$

so S_{2} converges since both of the series 'squeezing' S_{2} converge by the p-series test.
Problem 3. Find the sum of the following series.

$$
\sum_{k=1}^{\infty}\left(\frac{3+3^{2 k+1}}{10^{k}}\right)
$$

Solution. So far we only know how to deal with geometric series, i.e.

$$
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r} \quad \text { for }|r|<1
$$

so we need to reduce the series to a combination of geometric series. We do this as follows, first note that

$$
\sum_{k=1}^{\infty}\left(\frac{3+3^{2 k+1}}{10^{k}}\right)=\sum_{k=1}^{\infty} \frac{3}{10^{k}}+\sum_{k=1}^{\infty} \frac{3^{2 k+1}}{10^{k}}
$$

also by exponent laws, $3^{2 k+1}=3 \cdot 3^{2 k}=3 \cdot 9^{k}$, so

$$
=\underbrace{3 \sum_{k=1}^{\infty}\left(\frac{1}{10}\right)^{k}}_{S_{1}}+\underbrace{3 \sum_{k=1}^{\infty}\left(\frac{9}{10}\right)^{k}}_{S_{2}} .
$$

Let us deal with S_{1} first. Note that $k=1$ so we need to step the series back. We do this as follows, first expand the series

$$
\begin{aligned}
S_{1} & =3\left(\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots\right) \\
& =\frac{3}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\cdots\right) \\
& =\frac{3}{10} \sum_{k=0}^{\infty}\left(\frac{1}{10}\right)^{k} \\
& =\left(\frac{3}{10}\right)\left(\frac{1}{1-1 / 10}\right) \\
& =\left(\frac{3}{10}\right)\left(\frac{10}{9}\right) \\
& =\frac{1}{3} .
\end{aligned}
$$

Now we deal with S_{2}. As we saw for $S_{1}, k=1$ means that we need to take out a single factor of r from the series to step k back to 0 . Therefore,

$$
\begin{aligned}
S_{2} & =\frac{27}{10} \sum_{k=0}^{\infty}\left(\frac{9}{10}\right)^{k} \\
& =\left(\frac{27}{10}\right)\left(\frac{1}{1-9 / 10}\right) \\
& =\left(\frac{27}{10}\right)(10) \\
& =27
\end{aligned}
$$

Thus,

$$
\sum_{k=1}^{\infty}\left(\frac{3+3^{2 k+1}}{10^{k}}\right)=\frac{1}{3}+27=\frac{1}{3}+\frac{81}{3}=\frac{82}{3} .
$$

Problem 4. The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence (so $a_{1}<a_{2}<$ $\left.a_{3}<\cdots\right)$ bounded between 1 and 5 . Which of the following must be true?

Solution. Since the sequence $\left\{a_{n}\right\}_{n}$ is bounded and increasing, its limit must be between greater than 1 but less than or equal to 5 . Since a number between 1 and 5 must be greater than 0 , the series $\sum_{n} a_{n}=\infty$.
Problem 5. When the repeating decimal $0 . \overline{12}=0.1212121212 \ldots$ is written as a ration of integers a / b in reduced form, what is the value of $b-a$?

Solution. Note that

$$
\begin{aligned}
0 . \overline{12} & =0.12+0.0012+0.000012+\cdots \\
& =\sum_{k=1}^{\infty} \frac{12}{100^{k}} \\
& =\frac{12}{100} \sum_{k=0}^{\infty} \frac{1}{100^{k}} \\
& =\left(\frac{12}{100}\right)\left(\frac{1}{1-1 / 100}\right) \\
& =\left(\frac{12}{100}\right)\left(\frac{100}{99}\right) \\
& =\frac{12}{99} \\
& =\frac{3 \cdot 2^{2}}{3^{2} \cdot 11} \\
& =\frac{4}{33} .
\end{aligned}
$$

Thus,

$$
b-a=33-4=29
$$

Problem 6. Evaluate

$$
\int_{3}^{\infty} \frac{x}{\left(x^{2}-4\right)^{2}}
$$

Solution. Make the substitution $u=x^{2}-4, d u=2 x d x$ with $u=3^{2}-4=5$, $u=\infty$. Then

$$
\begin{aligned}
\int_{3}^{\infty} \frac{x}{\left(x^{2}-4\right)^{2}} & =\frac{1}{2} \int_{5}^{\infty} \frac{1}{u^{2}} d u \\
& =\frac{1}{2} \lim _{u \rightarrow \infty}\left[-\frac{1}{u}+\frac{1}{10}\right] \\
& =\frac{1}{10} .
\end{aligned}
$$

Problem 7. Evaluate the integral

$$
\int \sqrt{21+4 x-x^{2}} d x
$$

Solution. First, complete the square

$$
\begin{aligned}
21+4 x-x^{2} & =12-\left(x^{2}-4 x\right) \\
& =21-\left((x-2)^{2}-4\right) \\
& =25-(x-2)^{2}
\end{aligned}
$$

Now, using the trigonometric substitution $5 \sin \theta=x-2,5 \cos \theta d \theta=d x$, we get

$$
\begin{aligned}
\int \sqrt{21+4 x-x^{2}} d x & =25 \int \cos ^{2} \theta d \theta \\
& =\frac{25}{2} \int 1+\cos (2 \theta) d \theta \\
& =\frac{25}{4}(2 \theta+\sin (2 \theta)) \\
& =\frac{25}{4}\left[2 \sin ^{-1}\left(\frac{x-2}{5}\right)+\frac{2}{25}(x-2) \sqrt{25-(x-2)^{2}}\right]+C
\end{aligned}
$$

Problem 8. Evaluate the integral

$$
\int \frac{x^{3}+x^{2}+x+4}{x^{2}+4 x} d x
$$

Solution. First, notice that the integrand is not a proper rational function and must be reduce through long-division to a sum of a polynomial and a rational function. That is, notice that

$$
x^{3}+x^{2}+x+4=(x-3)\left(x^{2}+4 x\right)+13 x+4
$$

Thus, the integrand becomes

$$
\underbrace{x-3}_{L}+\underbrace{\frac{13 x+4}{x^{2}+4 x}}_{R} .
$$

The linear part, L, we can integrate easily, but the rational function part, R, requires more work. For R, the partial fraction decomposition is of the form

$$
\frac{A}{x}+\frac{B}{x+4}
$$

We can find these coefficients by the cover-up method:

$$
\frac{13 x+4}{x+4}=\frac{A}{x} x+\frac{B}{x+4} x, \text { plugging in } x=0 \Longrightarrow A=1 .
$$

Similarly,

$$
\frac{13 x+4}{x}=\frac{A}{x}(x+4)+\frac{B}{x+4}(x+4), \text { plugging in } x=-4 \Longrightarrow B=12 .
$$

Thus,

$$
\begin{aligned}
\int \frac{x^{3}+x^{2}+x+4}{x^{2}+4 x} d x & =\int L+R d x \\
& =\int x-3+\frac{1}{x}+\frac{12}{x+4} d x \\
& =\frac{1}{2} x^{2}-3 x+\ln |x|+12 \ln |x+4|+C
\end{aligned}
$$

Problem 9. Evaluate the integral

$$
\int \frac{1}{\left(t^{2}+4\right)^{3 / 2}} d t
$$

Solution. Using the trigonometric substitution $2 \tan \theta=t, 2 \sec ^{2} \theta d \theta=d t$, then $\frac{1}{2} \cos \theta=1 / \sqrt{t^{2}+4}$, so

$$
\begin{aligned}
\int \frac{1}{\left(t^{2}+4\right)^{3 / 2}} d t & =\int \frac{1}{8} \cos ^{3} \theta\left(2 \sec ^{2} \theta\right) d \theta \\
& =\frac{1}{4} \int \cos \theta d \theta \\
& =\frac{1}{4} \sin \theta+C
\end{aligned}
$$

Problem 10. Determine whether the series converges or diverges. State which test you used, and use it to justify your answer.

$$
\sum_{k=2}^{\infty} \frac{1}{k \ln k} .
$$

Solution. We will show that the series diverges by the integral test. By the integral test the series converges if and only if the integral below converges

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x
$$

However, upon making the substitution $u=\ln x, x d u=d x$, we get

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\int_{\ln 2}^{\infty} \frac{1}{u} d u=\lim _{u \rightarrow \infty}[\ln u-\ln (\ln 2)]=\infty .
$$

