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Lecture
Recall that given a function f of x which is n-times differentiable the n-th
order Taylor polynomial pn of f centered at a is given by the equation

pn(x) =
n∑

k=0

f (k)(a)
k! (x− a)k

= f(a) + f ′(a)(x− a) + f ′′(a)
2 (x− a)2 + · · ·+ f (n)

n! (a)(x− a)n.

The Taylor polynomial provides a good approximation to the original
function from which it was constructed. But how good is this approximation?
To answer this question we define the remainder Rn of a Taylor polynomial
pn of f as

Rn(x) = f(x)− pn(x) (1)
Finding an exact value for the remainder is computationally difficult for

several transcendental functions like sin, cos, tan, e, etc. but thankfully there
is a result which gives a bound on the remainder; this is the so-called Taylor’s
remainder theorem.

Theorem 1 (Taylor’s remainder theorem). Let n be a fixed positive integer.
Suppose there exists a number M such that |f (n+1)l(c)| ≤M , for all c between
a and x inclusive. The remainder in the n-th order Taylor polynomial for f
centered at a satisfies

|Rn(x)| ≤M
|x− a|n+1

(n + 1)! . (2)

Example 2. Consider the remainder for the n-th Taylor polynomial of cos x
centered at x = 0. By Eq. (??) the remainder is bounded by

|Rn(x)| ≤M
|x− a|n+1

(n + 1)! ,

where |f (n+1)(c)| ≤M . Note that |f (n+1)(c)| is either sin c or cos c (depending
on whether n is even or odd) and the values of sin (or cos) between 0 and x
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are bounded by 1, so a bound for the remainder is

|Rn(x)| ≤ |x− a|n+1

(n + 1)! ,

What does this mean? If we approximate, e.g. cos(0.1) using the 10-th
order Taylor polynomial of cos x, then the remainder

|R10(0.1)| ≤ 0.111

11! = 2.5× 1019,

meaning our approximation is good up to 19 decimal places, which is very
good. This is in fact how calculator approximate values of sin, ex, arctan,
etc.
Example 3. Consider now approximating

√
18 by the 3-rd order Taylor

polynomial of f(x) =
√

x centered at x = 16. The polynomial was

p3(x) = 4 + 1
8(x− 16)− 1

512(x− 16)2 + 1
16 384(x− 16)3.

In the book, we determined the error in approximating
√

18 by p3(18) by
computing

√
18 explicitly and taking the absolute value of its difference with

p3(18); this turned out to be 3.5× 10−5.
We will do the same but use the remainder theorem to find an upper

bound for the error. That is, in Eq. (??) we must find an appropriate value
for M which bounds |f (4)(c)| for 16 ≤ c ≤ 18. Taking the absolute value of
fourth derivative of f , we have

|f (4)(c)| = 15
16c7/2 .

Since this is a strictly decreasing function, the maximum of |f (4)(c)| within
16 ≤ c ≤ 18 must occur at c = 16 so |f (4)(c)| ≤ 5.7× 10−5. Thus,

|R3(18)| ≤ M

4! (18− 16)4 ≈ 5.7× 10−5(2/3) ≈ 3.8× 10−5,

which is good since the exact error is less than the bound on the error.
Example 4. Next we estimate the error of approximating e0.45 using the
sixth order Taylor polynomial for f(x) = ex centered at 0. By the remainder
theorem,

|R6| ≤M
|0.45− 0|7

7! ≈ 7.4× 10−7M,
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where |f (7)(c)| = ec ≤ M for any 0 ≤ c ≤ 0.45. Since ec is an increasing
function, the maximum is achieved at the endpoint e0.45, but this will not do
as it is exactly the value we are trying to compute.

So to obtain a bound we observe that e0.45 < e0.2 < 40.5 = 2. Therefore,

|R6| ≤M
|0.45− 0|7

7! < 1.5× 10−6.

Using the sixth order Taylor polynomial for ex, we approximate e0.45

p6(0.45) =
6∑

k=0

0.45k

k! ≈ 1.5683114

which is bigger or smaller than the actual value by no more than 1.5× 10−6.
Example 5. Let us look at one last example. The n-th order Taylor polyno-
mial for f(x) = ln(1− x) centered at 0 is

pn(x) = −
n∑

k=1

xk

k
= −x1

2x2 − 1
3x3 − · · · − 1

n
xn.

We will determine how many terms of the Taylor polynomial are needed to
approximate f(x) = (1− x) with an error less than 10−7 on −1/2 ≤ x ≤ 1/2.

First, we need to find a bound on |Rn| using the remainder theorem.
Differentiating f(x) (n + 1)-times we get

|f (n+1)(x)| = n!
(1− x)n+1 .

On the interval −1/2 ≤ x ≤ 1/2, the maximum value |f (n+1)(x)| can take
happens at x = 1/2 as the function is increasing from left to right. Thus,

|f (n+1)(1/2)| = n!
(1/2)n+1

so

|Rn(x)| ≤M
|x|n+1

(n + 1)!

= n!
(1/2)n+1

(1/2)n+1

(n + 1)!

= 1
n + 1 .
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To ensure that the error by the Taylor polynomial approximation is less
that 10−3 for −1/2 ≤ x ≤ 1/2, we need

|Rn| ≤
1

n + 1 < 10−3

or n > 999, which is huge. The error is likely o be significantly less if x is
closer to 0, and therefore, you would need less terms for the approximation.
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