MA 162 Notes 10
 July 16, 2019

Lecture

Recall that given a function f of x which is n-times differentiable the n-th order Taylor polynomial p_{n} of f centered at a is given by the equation

$$
\begin{aligned}
p_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}}{n!}(a)(x-a)^{n} .
\end{aligned}
$$

The Taylor polynomial provides a good approximation to the original function from which it was constructed. But how good is this approximation? To answer this question we define the remainder R_{n} of a Taylor polynomial p_{n} of f as

$$
\begin{equation*}
R_{n}(x)=f(x)-p_{n}(x) \tag{1}
\end{equation*}
$$

Finding an exact value for the remainder is computationally difficult for several transcendental functions like sin, cos, tan, e, etc. but thankfully there is a result which gives a bound on the remainder; this is the so-called Taylor's remainder theorem.

Theorem 1 (Taylor's remainder theorem). Let n be a fixed positive integer. Suppose there exists a number M such that $\left|f^{(n+1) l(c)}\right| \leq M$, for all c between a and x inclusive. The remainder in the n-th order Taylor polynomial for f centered at a satisfies

$$
\begin{equation*}
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!} \tag{2}
\end{equation*}
$$

Example 2. Consider the remainder for the n-th Taylor polynomial of $\cos x$ centered at $x=0$. By Eq. (??) the remainder is bounded by

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}
$$

where $\left|f^{(n+1)}(c)\right| \leq M$. Note that $\left|f^{(n+1)}(c)\right|$ is either $\sin c$ or $\cos c$ (depending on whether n is even or odd) and the values of $\sin ($ or $\cos)$ between 0 and x
are bounded by 1 , so a bound for the remainder is

$$
\left|R_{n}(x)\right| \leq \frac{|x-a|^{n+1}}{(n+1)!}
$$

What does this mean? If we approximate, e.g. $\cos (0.1)$ using the 10 -th order Taylor polynomial of $\cos x$, then the remainder

$$
\left|R_{10}(0.1)\right| \leq \frac{0.1^{11}}{11!}=2.5 \times 10^{19}
$$

meaning our approximation is good up to 19 decimal places, which is very good. This is in fact how calculator approximate values of \sin , e^{x}, arctan, etc.
Example 3. Consider now approximating $\sqrt{18}$ by the 3-rd order Taylor polynomial of $f(x)=\sqrt{x}$ centered at $x=16$. The polynomial was

$$
p_{3}(x)=4+\frac{1}{8}(x-16)-\frac{1}{512}(x-16)^{2}+\frac{1}{16384}(x-16)^{3} .
$$

In the book, we determined the error in approximating $\sqrt{18}$ by $p_{3}(18)$ by computing $\sqrt{18}$ explicitly and taking the absolute value of its difference with $p_{3}(18)$; this turned out to be 3.5×10^{-5}.

We will do the same but use the remainder theorem to find an upper bound for the error. That is, in Eq. (??) we must find an appropriate value for M which bounds $\left|f^{(4)}(c)\right|$ for $16 \leq c \leq 18$. Taking the absolute value of fourth derivative of f, we have

$$
\left|f^{(4)}(c)\right|=\frac{15}{16 c^{7 / 2}}
$$

Since this is a strictly decreasing function, the maximum of $\left|f^{(4)}(c)\right|$ within $16 \leq c \leq 18$ must occur at $c=16$ so $\left|f^{(4)}(c)\right| \leq 5.7 \times 10^{-5}$. Thus,

$$
\left|R_{3}(18)\right| \leq \frac{M}{4!}(18-16)^{4} \approx 5.7 \times 10^{-5}(2 / 3) \approx 3.8 \times 10^{-5}
$$

which is good since the exact error is less than the bound on the error.
Example 4. Next we estimate the error of approximating $e^{0.45}$ using the sixth order Taylor polynomial for $f(x)=e^{x}$ centered at 0 . By the remainder theorem,

$$
\left|R_{6}\right| \leq M \frac{|0.45-0|^{7}}{7!} \approx 7.4 \times 10^{-7} M
$$

where $\left|f^{(7)}(c)\right|=e^{c} \leq M$ for any $0 \leq c \leq 0.45$. Since e^{c} is an increasing function, the maximum is achieved at the endpoint $e^{0.45}$, but this will not do as it is exactly the value we are trying to compute.

So to obtain a bound we observe that $e^{0.45}<e^{0.2}<4^{0.5}=2$. Therefore,

$$
\left|R_{6}\right| \leq M \frac{|0.45-0|^{7}}{7!}<1.5 \times 10^{-6}
$$

Using the sixth order Taylor polynomial for e^{x}, we approximate $e^{0.45}$

$$
p_{6}(0.45)=\sum_{k=0}^{6} \frac{0.45^{k}}{k!} \approx 1.5683114
$$

which is bigger or smaller than the actual value by no more than 1.5×10^{-6}.
Example 5. Let us look at one last example. The n-th order Taylor polynomial for $f(x)=\ln (1-x)$ centered at 0 is

$$
p_{n}(x)=-\sum_{k=1}^{n} \frac{x^{k}}{k}=-x \frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\cdots-\frac{1}{n} x^{n} .
$$

We will determine how many terms of the Taylor polynomial are needed to approximate $f(x)=(1-x)$ with an error less than 10^{-7} on $-1 / 2 \leq x \leq 1 / 2$.

First, we need to find a bound on $\left|R_{n}\right|$ using the remainder theorem. Differentiating $f(x)(n+1)$-times we get

$$
\left|f^{(n+1)}(x)\right|=\frac{n!}{(1-x)^{n+1}} .
$$

On the interval $-1 / 2 \leq x \leq 1 / 2$, the maximum value $\left|f^{(n+1)}(x)\right|$ can take happens at $x=1 / 2$ as the function is increasing from left to right. Thus,

$$
\left|f^{(n+1)}(1 / 2)\right|=\frac{n!}{(1 / 2)^{n+1}}
$$

so

$$
\begin{aligned}
\left|R_{n}(x)\right| & \leq M \frac{|x|^{n+1}}{(n+1)!} \\
& =\frac{n!}{(1 / 2)^{n+1}} \frac{(1 / 2)^{n+1}}{(n+1)!} \\
& =\frac{1}{n+1} .
\end{aligned}
$$

To ensure that the error by the Taylor polynomial approximation is less that 10^{-3} for $-1 / 2 \leq x \leq 1 / 2$, we need

$$
\left|R_{n}\right| \leq \frac{1}{n+1}<10^{-3}
$$

or $n>999$, which is huge. The error is likely o be significantly less if x is closer to 0 , and therefore, you would need less terms for the approximation.

