
MA 162 Lecture 4
June 20, 2019

Lecture
Today we will talk about several methods for evaluating integrals of trigonomet-
ric functions. A good grasp of these techniques, together with trigonometric
substitutions which are covered in tomorrow’s lecture, will allow us to deal
with more complicated integrals.

Powers of sine or cosine
There are two major techniques for evaluating integrals of the form

∫
sin x dx

and
∫

cosn x dx. Both of these strategies will require us to know some trigono-
metric identities. For convenience, let us list them here:

cos2 x+ sin2 x = 1 (A)
1 + tan2 x = sec2 x (B)

sin2 x = 1− cos(2x)
2 (C)

cos2 x = 1 + cos(2x)
2 (D)

Example 1. Evaluate the following integrals

(a)
∫

cos5 dx, (b)
∫

cos4 x dx.

Solution. (a) For integrals involving odd powers of cosx, the most effective
method is to factor a power of cosx from the product and rewrite the
product by using Identity (A). After doing that, the substitution u = sin x,
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du = cosx dx will allow us to evaluate the integral, as we will now see:∫
cos5 x dx =

∫
(cos4 x) cosx dx

=
∫

(1− sin2 x)2 cosx dx

=
∫

(1− u2)2 du

=
∫

1− 2u2 + u4 du

= u− 2
3u

3 + 1
5u

5 + C

= sin x− 2
3 sin3 x+ 1

5 sin5 x+ C.

This would also work if you replace cosx by sin x by making the nec-
essary adjustment. (But be careful as this time since u = cosx you get
du = − sin x dx.)

(b) For integrals involving even powers of cosx, we will apply Identity (D)
recursively, as we will now see:∫

cos4 dx =
∫ (1 + cos(2x)

2

)2

dx

= 1
4

∫ 1 + 2 cos(2x) + cos2(2x) dx
.

Because we have another even power of cosine, cos2(2x), we need to apply
Identity (D) again and we do this until we no longer get an even power of
cosine. Luckily for us, we need only do this once more:∫

cos4 dx = 1
4

∫ 1 + 2 cos(2x) + cos2(2x) dx


= 1
4

∫ 1 + 2 cos(2x) +
(

1 + cos(4x)
2

)
dx


= 1

4

∫ 3
2 + 2 cos(2x) + 1

2 cos(4x) dx


= 3
8x+ 1

4 sin(2x) + 1
32 sin(4x) + C.
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The same general method works for even powers of sine, but with the
recursive application of Identity (C). 3

Integrating products of powers of sine and cosine
Next we consider integrals of the form

∫
sinm x cosn x dx. The methods for

dealing with these are summarized below.

SC1. If m is odd and positive, n real – split off sin x, rewrite the resulting
even power of sin x in terms of cosx, and then use u = cosx, du =
− sin x dx.

SC2. If n is odd and positive, m is real – split off cosx, rewrite the resulting
even power of cosx in terms of sin x, and use u = sin x, du = cosx dx.

SC3. If m and n are both even nonnegative integers – Use half-angle formu-
las (Identities (C) or (D)) to transform the integrand into a polynomials
of cos(2x), and apply this strategy again to powers of cos(2x) greater
than 1.

It is best to illustrate all of this with an example.
Example 2. Evaluate integrals

(a)
∫

sin4 x cos2 x dx, (b)
∫

sin3 x cos−2 x dx.

Solution. (a) Using the methods described above, we want to use one of the
identities (C) or (D) to half the power of the sine or cosine factors. Since the
power of the cosine factors is 2, it would be faster to start there:

∫
sin4 x cos2 x dx =

∫ (1− cos(2x)
2

)2(1 + cos(2x)
2

)

= 1
8

[ ∫
1− cos(2x)− cos2(2x)− cos2(2x)

+ cos3(2x) dx
]
.

Now that we have simple powers of cosx, we can apply the methods from
the last section to individually evaluate these (the 1− cos(2x) can be dealt
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with immediately). That is,∫
cos 2x = 1

2 sin(2x),∫
cos2(2x) =

∫ 1 + cos(4x)
2 dx

= 1
2x+ 1

8 sin(4x),∫
cos3(2x) dx =

∫
(1− sin2(2x)) cos(2x) dx

make the substitution u = sin(2x), du = 2 cos(2x) dx

= 1
2

∫
(1− u2)du

= 1
2u−

1
6u

3

= 1
2 sin(2x)− 1

6 sin3(2x).

Putting all of this together, and simplifying, we get∫
sin4 x cos2 x dx = 1

16x−
1
64 sin(4x)− 1

48 sin3(2x) + C.

(b) This one is a tad bit easier. If at least one of the powers is a positive
odd power, then this approach works:∫

sin3 x cos−2 x dx =
∫

sin2 x cos−2 x sin x dx

by Identity (A)

=
∫

(1− cos2 x) cos−2 x sin x dx
now make the substitution u = cosx, du = − sin x dx

=
∫
−(1− u2)u−2 du

=
∫

(1− u−2) du

= u+ 1
u

+ C

= cosx+ 1
cosx + C.

3
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Remark 3. What strategy would you use to evaluate
∫

sin−3/2 x cos3 x dx?
Solution. At least one of the factors, cosine in this case, has positive odd
power so we can use the second method (the one we used on part (b) of
Example 2) to evaluate this integral. Coincidentally, here are the details:∫

sin−3/2 x cos3 x dx =
∫

sin−3/2 x cos2 x cosx dx

=
∫

sin−3/2 x(1− sin2 x) cosx dx
make the substitution u = sin x, du = cosx dx

=
∫
u−3/2(1− u2) du

=
∫
u−3/2 − u1/2 du

= −2u−1/2 − 3
2u

3/2 + C

= −2 sin−1/2 x− 2
3 sin3/2 x+ C.

3

Reduction formulas
The previous methods are not only tedious, but fail to cover other trigono-
metric functions such as tangent, secant, cotangent, and cosecant (at least
peripherally). We will henceforth use the following reduction formulas to deal
with powers of some of the aforementioned powers of trigonometric functions
as well as methods from the second section to deal with all of the remaining
cases.

Reduction formulas

1.
∫

sinn x dx = −sinn−1 x cosx
n

+ n− 1
n

∫
sinn−2 x dx

2.
∫

cosn x dx = cosn−1 x sin x
n

+ n− 1
n

∫
cosn−2 x dx

3.
∫

tann x dx = tann−1 x

n− 1 −
∫

tann−2 x dx, for n 6= 1
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4. secn x dx = secn−2 x tan x
n− 1 + n− 2

n− 1

∫
secn−2 x dx, for n 6= 1.

To deal with the case when n = 1 for 3 and 4 above we need more
sophisticated techniques (which we will soon see). For now, take the following
for granted: ∫

tan x dx = − ln |cosx|+ C, (1)∫
secx dx = ln |secx+ tan x|+ C, (2)∫
cotx dx = ln |sin x|+ C, (3)∫
cscx dx = − ln |cscx+ cotx|+ C. (4)

Here’s an example of how you might use these formulas.
Example 4. Evaluate

∫
tan4 x dx.

Solution. Using reduction formula 3, we get:∫
tan4 x dx = 1

3 tan3 x−
∫

tan2 x dx

use it again on
∫

tan2 x dx

= 1
3 tan3 x−

(
tan x−

∫
1 dx

)

= 1
3 tan3 x− tan x+ x+ C.

3

Recitation
Let’s talk about some of the pumping problems you will see in tonight’s
homework. For many of these problems, you will need to make geometrical
observations to help you come up with a formula for the work required to
pump out a certain amount of liquid in the tank a certain height above the
tank (usually, to the top of the tank).

There are three containers you will encounter

i. cylinder,
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ii. inverted cone,
iii. trapezoidal trough.
We are going to determine the forces and the work required to pump a

liquid of density ρ from the tank to the top of the container.
We will use the following figure of a cylinder to guide us through our

calculations:

Figure 1: A cylindrical container.

The first thin we must do is determine the volume in an infinitesimal sliver
(the dark blue disk in Fig. 1). The sliver is cylindrical with constant radius
equal to R, so

dV = πR2 dy.

From this formula, we can calculate the (infinitesimal) force needed to
pump the sliver up (this is equivalent to the weight of the sliver):

dF = πρgR2 dy.

Thus, by the equation for work, the (infinitesimal) work required to pump
the sliver out of the container

dW = πρgR2(H − y) dy.
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Thus, the work required to pump the whole fluid out of the container is

W =
∫ h

0
πρgR2(H − y) dy. (5)

For the cone, consider the following image:

Figure 2: A inverted conical tank.

We need to determine the volume of the infinitesimal slivers (marked in
dark blue in Fig. 2). The slivers are again cylindrical, but the radius r varies
with respect to y

dV = πr(y)2 dy.

By using the symmetry inherent to the cylinder, we can see that the inscribed
triangle of base R and height H is similar to the inscribed triangle of base r
and height y so

y

r
= H

R
.

Thus, r = R
H
y so the infinitesimal volume can be written entirely in terms of

y, like so
dV = π

(
R

H

)2
y2 dy.
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Therefore, the force necessary to hold this infinitesimal volume is

dF = πρg
(
R

H

)2
y2 dy. (6)

By the work equation, the infinitesimal work done in lifting this sliver to
the top of the container is

dW = dF (H − y) = πρg
(
R

H

)2
y2(H − y) dy.

Integrating this from the bottom of the container to where the liquid stops
gives us the total work:

W =
∫ h

0
πρg

(
R

H

)2
y2(H − y) dy. (7)

The last of these is the trapezoidal trough which looks like the following:

Figure 3: A trapezoidal trough.

To find the infinitesimal volume, we note first that the cross sections are
rectangular, so

dV = L(w + 2x(y)) dy

By similar triangles, we see that

H

(W − w)/2 = y

x

so
x =

(
W − w

2H

)
y
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and therefore
dV = L

(
w + W − w

H
y

)
dy

In some of the homework questions, you will need to know the force on
the face of the trapezoid, which is the integral of

dF = ρgL

(
w + W − w

H
y

)
dy (8)

Jumping to the punch line,

W =
∫ h

0
ρgL

(
w + W − w

H
y

)
(L− y) dy. (9)
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