
MA 162 Lecture 8
July 2, 2019

Lecture

Definition of sequences
Recall that a sequence of real numbers {an} is an assignment to each natural
number n = 1, 2, . . . (called an index of the sequence) a real number an

(called a term).
There are three main ways of defining a sequence.

• Through a function. For example:

an = n

n+ 1 , {an} = {1
2 ,

2
3 ,

3
4 ,

4
5 ,

5
6 . . . }; (1)

• Through a recurrence relation. For example: the Fibonacci sequence,
which is defined

a1 = 1, a2 = 1, an = an−1 + bn−2, {an} = {1, 1, 2, 3, 5 . . . }; (2)

• Through inference: For example, the digits of π form the sequence

{3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . }

Remark. Note that this last way of defining a sequence, through inference, is
by far the least reliable as nowhere in the definition of a sequence does it say
that my choices for the terms of the sequence ‘have to follow a pattern.’ We
may very well pick numbers at random, in which case, we would not be able
to infer, from the first few terms, what subsequent terms in the sequence are.

Today we will learn more about sequences. In particular, we will develop
methods to determine the behavior of sequences as n→∞.

Graphing sequences
Sequences, like functions, can be graphed and we may learn much about the
behavior of a sequence as n→∞ by doing this.
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Figure 1: The first 50 terms of the sequence (1).

Fig. 1 shows the first 50 terms of the sequence given by (1). Notice that
as we go further and further out into the sequence, the terms of (1) seem to
be getting closer and closer to 1.

On the other hand, if you plot the terms of the Fibonacci sequence, (2),
the terms grow without bounds. We will make more precise what we mean by
getting closer and growing without bounds.

Definition of a limit
In the last section, we motivated the notion of a limit (a value to which a
sequence gets closer and closer). Now we are going to state some terminology
and say precisely what we mean by getting close to the limit.

Definition.

1. We say that {an} converges to L if an gets as close to L as we want for
sufficiently large n.

2. We say that {an} converges to ∞ if an gets as large as we want for
sufficiently large n.

3. We say that {an} converges to∞ if an gets as large as small as negative
as we want for sufficiently large n.

A sequence which does not converges is said to diverges.
In all three of these cases we write

L = lim
n→∞

an

for the limit of {an}.
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Remark. Traditionally, when the limit of a sequence is not finite we say
that the sequence diverges. However, following the book, we will make the
stipulation that the limit of a sequence can be ±∞.

The precise definition of ‘as close as we want’ is beyond the scope of this
class, but we can say a little about this here as it is covered in the book.
Intuitively, what does it mean for a sequence {an} to get close to L? One
possible meaning could be this, no matter what tolerance for error you have,
we can find a term of the sequence such that subsequent terms match that
error-tolerance, i.e. for any ε > 0 there is an integer N such that for n > N

|L− an| < ε.

For a function to converge to infinity, means that for any number M > 0
we can find counting number N such that for n > N

an > M.

Formally:

Definition. 1. A sequence {an} converges to L if for any ε > 0, there
exists an N such that n ≥ N implies |L− an| < ε.

2. A sequence {an} converges to ∞ if for any M > 0, there exists an N
such that n ≥ N implies a > M .

3. A sequence {an} converges to −∞ if for any M < 0, there exists an N
such that n ≥ N implies a < M .

Finding limits
Now, given a sequence how can we get a hold of the limit? For sequences
which are defined functionally, there is a simple way.

Theorem 1. Let {an} be a sequence such that an = f(n) for a function f .
Then, if the limit L of f(x) as x→∞ exists, limn an = L.

What this theorem is telling us is that we can take the limit of a sequence
by employing techniques we learned about limits of functions. That is, if we
can find a function representation for the terms of the sequence, it is enough
to look at the limit of the function as x→∞.

Let us look at an example of this.
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Example 2. Find the limit of the sequence {(3n2 − 1)/(10n+ 5n2)}∞n=2, if it
exists.
Solution. By Theorem 1, we need only find a function f(x) such that an = f(n)
and find L = limx→∞ f(x). It is easy, from the form of the terms of the
sequence, to deduce that

f(x) = 3x2−
10x+ 5x2 .

Now

L = lim
x
f(x)

= limx
3x2 − 1

10x+ 5x2

which, by L’Hôpital’s rule becomes

= lim
x

6x2

10 + 10x
which, again, by L’Hôpital’s, becomes

= lim
x

6
10

= 3
5 .

3

Let us look at another example.
Example 3. Find the limit of the sequence {e2n/n} if it exists.
Solution. Here it is easy to see that

f(x) = e2x

x
,

so

lim
n
{e2n/n} = lim

x
f(x)

lim
x

e2x

x
= lim

x
2e2x

=∞.

So the sequence converges to ∞. 3
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Here are some important properties about sequences with finite limits.

Theorem 4. Let {an} and {bn} be sequences with lim an = L and lim bn = K
both finite. Then

1. limn an ± bn = L+K;
2. limn can = cL;
3. limn anbn = LK;
4. limn an/bn = L/K, provided K 6= 0;
5. limn an

p = Lp provided an ≥ 0.

Remark. Why is it important that L and K be finite in the theorem above?
Consider the following sequences:

an = 1
n
, bn = n, cn = n2.

By part 3 of Theorem 2, we would have

lim
n
anbn = 0 · ∞ = 0,

but upon closer inspection,

lim
n
anbn = lim

n
n−1 · n =n 1 = 1.

On the other hand,
lim

n
anbn = 0 · ∞ = 0,

but
lim

n
anbn = lim

n
n−1n2 = lim

n
n =∞.

The moral of the story is that ∞ is not a proper number and if we try to
force it to play that role, we may get unexpected results.

Another extremely important tool that carries over from limits of functions
is the so-called squeeze theorem.

Theorem 5 (Squeeze theorem). Let {an}, {bn}, {cn} be sequences with L =
limn an =n bn and such that eventually an ≤ cn ≤ bn, i.e. past a certain
threshold n > N , then limn cn = L.

Corollary 6. If limn |an| = 0 then limn an = 0.
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Sketch. This follows easily from the squeeze theorem, since

−|an| ≤ an ≤ |an|,

so limn |an| = 0 and limn−|an| = −0 = 0. Thus, limn an = 0. 2

Here is an example of how you could apply Corollary 6 to determine the
convergence of a seemingly complicated sequence.
Example 7. Find the limit, if it exists, of{

cos(πn)
n

}
.

Solution. Note that

cos(πn) =
−1 if n is odd,

1 if n is even.

Therefore, {∣∣∣∣∣cos(πn)
n

∣∣∣∣∣
}

=
{

1
n

}
,

whose limit is 0. Corollary 6 then tells us that

lim
n

cos(πn)
n

= 0.

3

Geometric sequences
You will be encountering geometric series very soon, so we will say a little bit
about geometric sequences here. A geometric sequence is a sequence of the
form

an = arn

for some real numbers a, r.
The limit of a geometric sequence is very well understood. For geometric

sequences with a = 1, the following holds.
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Theorem 8. The sequence {rn} converges if −1 < r ≤ 1 and diverges for all
other values of r. Also,

lim
n
rn =

0 if − 1 < r < 1,
1 if r = 1.

Example 9. Determine if the following sequences converge or diverge. If the
sequence converges, determine the limit.

(a) {(1/
√

2)n+1}

(b) {
√

2n}

(c) {(−1)n}

(d) {1n}

Solution. For (a) note that the terms are geometric with r = 1/
√

2 < 1 after
we play with the exponent of the sequence, i.e. (1/

√
2)n+1 = (1/

√
2)(1/

√
2)n.

Therefore, the sequence {(1/
√

2)n} converges to 1 by Theorem 7, and by part
2 of Theorem 4, the limit of the original sequence is 1/

√
2 =
√

2/2.
For (b), by Theorem 7, since the terms are geometric with r =

√
2 > 1,

the sequence converges to ∞.
For (c), the sequence is geometric with r = −1 so the sequence diverges.

Moreover, it does not converge to any finite or infinite value.
For (d), the sequence is geometric with r = 1 so the limit is 1; but you,

very likely, already saw that by writing out the first few terms. 3

Monotonicity
There are two more important properties of sequences which will let us
determine limits. The first of these is the concept of monotonicity.

Definition 10. Let {an} be a sequence.

1. We say {an} is increasing if an+1 > an for every n.

2. We say {an} is decreasing if an+1 < an for every n.

3. If {an} is either increasing or decreasing we say an is monotonic.
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4. If there exists a number m such that m ≤ an for every n we say {an} is
bounded below by m.

5. If there is a number M such that an ≤ M for every n we say the
sequence is bounded above.

6. If the sequence is bounded above and below, we say the sequence is
bounded.

Example 11. Determine if the following sequences are monotonic and/or
bounded.

(a) {−n2}

(b) (−1)n+1

(c) {2/n2}

Solution. (a) is monotonic, but not bounded as for any M < 0, there is
eventually an integer N such that −N < M .

(b) is bounded but not monotonic. It is not monotonic because the first
three terms of the sequence are −1, 1,−1 so a1 < a2, but a2 > a1. It is
bounded because the sequence never goes above 1 or below −1>

(c) The sequence is both monotonic and bounded since

an = 2
n2 <

2
(n− 1)2 = an−1

as

1 > (n− 1)2

n2

=
(
n− 1
n

)2

=
(

1− 1
n

)2

.

It is bounded since the largest term of the sequence is 2 (upper bound)
and the sequence approaches, but never reaches, 0 (the lower bound, and the
limit). 3
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Example 12. Determine if the following sequences are monotonic and/or
bounded.

(a) {n/(n+ 1)}

(b) {n3}n4 + 10000

Solution. 3

Theorem 13. If {an} is a bounded and monotonic sequence, then {an}
converges.

Remark. This theorem applies the very first example we looked at, (1). Note
that for this sequence,

an = n

n+ 1 >
n− 1
n

= an−1

since, after rearranging the inequality above,

n2 > (n+ 1)(n− 1) = n2 − 1,

so the sequence is monotonic and increasing (often, we say monotonically
increasing). Moreover, it is bounded since

an = n

n+ 1 < 1

so
n < n+ 1,

which is true. Theorem 13 would then tell us that the sequence must converge,
although it does not tell us what it converges to.
Remark. You may have noticed that oftentimes, the limit of a sequence can
be used as a bound. This is an excellent observation and this can help you
find the limit of a sequence. That is, finding the optimal upper (or lower
bound, as it may be) of a bounded sequence can help you determine its limit
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