MA 162 Quiz 3
 June 20, 2019

You have 15 minutes to complete this quiz. Each correct answer will award you five points. Show your work neatly and you will receive two to three points depending on your level of correctness.
Problem 3.1. Which of the following integrals give the length of the curve $y=\sin \sqrt{x}$ on the interval $a \leq x \leq b$?
(A) $\int_{a}^{b} \sqrt{x+\cos ^{2} \sqrt{x}} d x$
(B) $\int_{a}^{b} \sqrt{1+\cos ^{2} \sqrt{x}} d x$
(C) $\int_{a}^{b} \sqrt{\sin ^{2} \sqrt{x}+\frac{1}{4 x} \cos ^{2} \sqrt{x}} d x$
(D) $\int_{a}^{b} \sqrt{1+\frac{1}{4 x} \cos ^{2} \sqrt{x}} d x$
(E) $\int_{a}^{b} \sqrt{\frac{1+\cos ^{2} \sqrt{x}}{4 x}} d x$

Solution. By the arclength formula:

$$
\int_{a}^{b} \sqrt{1+\left(\frac{1}{2 \sqrt{x}} \cos \sqrt{x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\frac{1}{4 x} \cos ^{2} \sqrt{x}} d x
$$

Problem 3.2. Which of the following integrals gives the surface area of the surface of revolution formed by revolving $y=1 / x, a \leq x \leq b$ about the x-axis?
(A) $\int_{a}^{b} \frac{2 \pi}{x} d x$
(B) $\int_{a}^{b} \frac{2 \pi}{x^{2}} d x$
(C) $\int_{a}^{b} 2 \pi \frac{\sqrt{1+x^{4}}}{x^{3}} d x$
(D) $\int_{a}^{b} 2 \pi\left(1+\frac{1}{x^{2}}\right) d x$
(E) $\int_{a}^{b} 2 \pi \sqrt{1+\frac{1}{x^{4}}} d x$

Solution. By the surface area formula (for surfaces of revolution about the
x-axis):

$$
\begin{aligned}
\int_{a}^{b} \frac{2 \pi}{x} \sqrt{1+\left(\frac{1}{x}\right)^{2}} d x & =\int_{a}^{b} \frac{2 \pi}{x} \sqrt{1+\frac{1}{x^{4}}} d x \\
& =\int_{a}^{b} 2 \pi \sqrt{\frac{1}{x^{2}}+\frac{1}{x^{6}}} d x \\
& =\int_{a}^{b} 2 \pi \sqrt{\frac{x^{4}+1}{x^{6}}} d x \\
& =\int_{a}^{b} 2 \pi \frac{\sqrt{x^{4}+1}}{x^{3}} d x
\end{aligned}
$$

Problem 3.3. A spring has a natural length of 5 m . If a 25 N force is required to keep it stretch to a length of 10 m , how much work (in Joules) is required to stretch it from 5 m to 6 m ?
(A) $55 / 2$
(B) $55 / 4$
(C) $5 / 4$
(D) $5 / 2$
(E) 5

Solution. Note that the natural length is the equilibrium position so the spring is stretch by 5 m from its equilibrium position. By Hooke's law, $F=k x$ so $k=F / x=25 / 5=5 \mathrm{~N} \cdot \mathrm{~m}$. Thus, the work required to stretch this from 5 m to 6 m is (i.e. 1 m from equilibrium position) is

$$
W=\frac{1}{2} k x^{2}=\frac{5 \cdot 1^{2}}{2}=5 / 2 \mathrm{~J} .
$$

