MA 162 Quiz 5
 July 2, 2019

You have 15 minutes to complete this quiz. Each correct answer will award you five points. Show your work neatly and you will receive one to three points depending on your level of correctness.

Problem 5.1. The partial fractions decomposition of

$$
f(x)=\frac{x}{(x-1)(x-2)(x-3)}
$$

is of the form

$$
\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3} .
$$

Find the value of B.
(A) -2
(B) $\frac{1}{2}$
(C) -1
(D) 3
(E) 0

Solution. By the cover-up method,

$$
\frac{x}{(x-1)(x-3)}=\frac{A}{x-1}(x-2)+B+\frac{C}{x-3}(x-2)
$$

plugging in $x=2$, we get

$$
\begin{aligned}
\frac{2}{(2-1)(2-3)} & =\frac{A}{2-1}(2-2)+B+\frac{C}{2-3}(2-2) \\
\frac{2}{(1)(-1)} & =\frac{A}{1} \cdot 0+B+\frac{C}{-1} \cdot 0 \\
-2 & =B .
\end{aligned}
$$

Problem 5.2. If you expand $(2 x+1) /\left(x^{3}+x\right)$ as a partial fraction, which expression below would you get?
(A) $\frac{1}{x}+\frac{-x+2}{x^{2}+1}$
(B) $\frac{-1}{x^{2}}+\frac{1}{x+1}$
(C) $\frac{2}{x}+\frac{1}{x^{2}+1}$
(D) $\frac{-1}{x}+\frac{x}{x^{2}+1}$
(E) $\frac{-2}{x}+\frac{1}{x^{2}+1}$

Solution. By factoring the denominator into $x\left(x^{2}+1\right)$ we know that the partial fraction decomposition has the form

$$
\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

By the cover-up method, we may easily find the value of A

$$
\begin{aligned}
\frac{2 x+1}{x\left(x^{2}+1\right)} & =\frac{A}{x}+\frac{B x+C}{x^{2}+1} \\
\frac{2 x+1}{x^{2}+1} & =A+\frac{B x+C}{x^{2}+1} x
\end{aligned}
$$

plugging in $x=0$, we get

$$
\begin{aligned}
\frac{2 \cdot 0+1}{0^{2}+1} & =A+\frac{B \cdot 0+C}{0^{2}+1} \cdot 0 \\
A & =1
\end{aligned}
$$

This is enough to tell you what the right answer is. But for the sake of completion, let us find B and C, below

$$
\begin{aligned}
\frac{2 x+1}{x\left(x^{2}+1\right)} & =\frac{1}{x}+\frac{B x+C}{x^{2}+1} \\
2 x+1 & =x^{2}+1+(B x+C) x \\
2 x+1 & =(1+B) x^{2}+C x+1
\end{aligned}
$$

Thus, $B=-1$ and $C=2$. The partial fraction decomposition is therefore

$$
\frac{1}{x}+\frac{-x+2}{x^{2}+1} .
$$

Problem 5.3. Evaluate the improper integral

$$
\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} d x
$$

(A) $\ln 3$
(B) $\ln (1 / 2)$
(C) $\ln 2$
(D) $3 \ln 2$
(E) the integral diverges

Solution. Note that the denominator is $(x-2)(x-3)$ so the partial fraction decomposition of the integrand is of the form

$$
\frac{A}{x-2}+\frac{B}{x-3} .
$$

By the cover-up method,

$$
\frac{1}{x-3}=A+\frac{B}{x-3}(x-2) \Longrightarrow A=-1
$$

and

$$
\frac{1}{x-2}=\frac{A}{x-2}(x-3)+B \Longrightarrow B=1
$$

Thus,

$$
\begin{aligned}
\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} d x & =\int_{4}^{\infty} \frac{-1}{x-2}+\frac{1}{x-3} d x \\
& =-\ln |x-2|+\left.\ln |x-3|\right|_{4} ^{\infty} \\
& =\left.\ln \left|\frac{x-3}{x-2}\right|\right|_{4} ^{\infty} \\
& =\lim _{x \rightarrow \infty} \ln \left|\frac{x-3}{x-2}\right|-\ln \left|\frac{4-3}{4-2}\right| \\
& =\ln (1)-\ln \left(\frac{1}{2}\right) \\
& =-\ln \left(\frac{1}{2}\right) \\
& =\ln \left(\left(\frac{1}{2}\right)^{-1}\right) \\
& =\ln 2 .
\end{aligned}
$$

