MA 162 QUIZ 9 July 25, 2019

You have 15 minutes to complete this quiz. Each correct answer will award you five points. Show your work **neatly** and you will receive **one** to **three points** depending on your level of correctness.

Problem 9.1. Find the interval of convergence for

$$\sum_{n=1}^{\infty} \frac{3^n}{n^n} (x-5)^n.$$

(A)
$$(-1/3, 1/3)$$
 (B) $(5-e/3, 5+e/3)$ (C) $(5-e/3, 5+e/3)$ (D) $(5-1/3, 5+1/3)$ (E) $(-\infty, \infty)$

Solution. By Hadamard's formula for the radius of convergence,

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{3^n}{n^n} \right|^{1/n} = \lim_{n \to \infty} \frac{3}{n} = 0.$$

Therefore, $R = \infty$ so the interval of convergence must be $(-\infty, \infty)$.

Problem 9.2. The first three nonzero terms of the Maclaurin series of $f(x) = x/(1+x^3)$ are

(A)
$$x + x^4 + x^7$$
 (B) $x - x^4 + x^7$ (C) $1 - x^3 + x^6$ (D) $1 + x^3 + x^6$ (E) $-x - x^4 - x^7$

Solution. To find the Maclaurin series of $f(x) = x/(1+x^3)$ we need not find any of the derivatives since

$$f(x) = x \left(\frac{1}{1 - (-x^3)}\right) = x \sum_{n=0}^{\infty} (-1)^n x^{3n} = \sum_{n=0}^{\infty} (-1)^n x^{3n+1}.$$

Expanding this out, we get

$$x - x^4 + x^7 - x^{10} + \cdots$$

 \diamond

Problem 9.3. Use the fact that

$$\frac{2x}{(1-x^2)^2} = \frac{d}{dx} \left(\frac{1}{1-x^2}\right)$$

to find a power series for $2x/(1-x^2)^2$.

(A)
$$\sum_{n=1}^{\infty} 2nx^{2n-1}$$
 (B) $\sum_{n=1}^{\infty} (-1)^n (2n+1)x^{2n+1}$ (C) $\sum_{n=1}^{\infty} (2n-1)x^{2n+1}$ (D) $\sum_{n=1}^{\infty} nx^{2n+1}$ (E) $\sum_{n=1}^{\infty} \frac{1}{n+1}x^{2n-1}$

Solution. The power series for $1/(1-x^2)$ is

$$\sum_{n=0}^{\infty} x^{2n}.$$

Thus, the power series for $2x/(1-x^2)^2$ is

$$\frac{d}{dx}\sum_{n=0}^{\infty}x^{2n} = \sum_{n=1}^{\infty}2nx^{2n-1}.$$

\sim
\sim
•