MA 162 Quiz 9
 July 25, 2019

You have 15 minutes to complete this quiz. Each correct answer will award you five points. Show your work neatly and you will receive one to three points depending on your level of correctness.

Problem 9.1. Find the interval of convergence for

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{n}}(x-5)^{n}
$$

(A) $(-1 / 3,1 / 3)$
(B) $(5-e / 3,5+e / 3)$
(C) $(5-e / 3,5+e / 3)$
(D) $(5-1 / 3,5+1 / 3)$
(E) $(-\infty, \infty)$

Solution. By Hadamard's formula for the radius of convergence,

$$
\frac{1}{R}=\lim _{n \rightarrow \infty}\left|\frac{3^{n}}{n^{n}}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{3}{n}=0
$$

Therefore, $R=\infty$ so the interval of convergence must be $(-\infty, \infty)$.
Problem 9.2. The first three nonzero terms of the Maclaurin series of $f(x)=x /\left(1+x^{3}\right)$ are
(A) $x+x^{4}+x^{7}$
(B) $x-x^{4}+x^{7}$
(C) $1-x^{3}+x^{6}$
(D) $1+x^{3}+x^{6}$
(E) $-x-x^{4}-x^{7}$

Solution. To find the Maclaurin series of $f(x)=x /\left(1+x^{3}\right)$ we need not find any of the derivatives since

$$
f(x)=x\left(\frac{1}{1-\left(-x^{3}\right)}\right)=x \sum_{n=0}^{\infty}(-1)^{n} x^{3 n}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n+1} .
$$

Expanding this out, we get

$$
x-x^{4}+x^{7}-x^{10}+\cdots
$$

Problem 9.3. Use the fact that

$$
\frac{2 x}{\left(1-x^{2}\right)^{2}}=\frac{d}{d x}\left(\frac{1}{1-x^{2}}\right)
$$

to find a power series for $2 x /\left(1-x^{2}\right)^{2}$.
(A) $\sum_{n=1}^{\infty} 2 n x^{2 n-1}$
(B) $\sum_{n=1}^{\infty}(-1)^{n}(2 n+1) x^{2 n+1}$
(C) $\sum_{n=1}^{\infty}(2 n-1) x^{2 n+1}$
(D) $\sum_{n=1}^{\infty} n x^{2 n+1}$
(E) $\sum_{n=1}^{\infty} \frac{1}{n+1} x^{2 n-1}$

Solution. The power series for $1 /\left(1-x^{2}\right)$ is

$$
\sum_{n=0}^{\infty} x^{2 n}
$$

Thus, the power series for $2 x /\left(1-x^{2}\right)^{2}$ is

$$
\frac{d}{d x} \sum_{n=0}^{\infty} x^{2 n}=\sum_{n=1}^{\infty} 2 n x^{2 n-1}
$$

