MA 261 QuIZ 3

September 11, 2018

If you do not know how to do any one of these problems, circle "(E) I don't know" as your answer choice. You will receive two points for doing that. Each problem is worth five points. You get two points for writing your full name and three points for writing your PUID and section number.
Problem 3.1. A particle is moving with acceleration

$$
\mathbf{a}(t)=\langle 6,6 t, 0\rangle
$$

If at time $t=0, \mathbf{v}(0)=\langle 0,0,1\rangle$, what is $\mathbf{v}(t)$?
(A) $\langle 6 t, 3 t, 1\rangle$
(B) $\left\langle 6 t, 3 t^{2}, 0\right\rangle$
(C) $\left\langle 6 t, 3 t^{2},-1\right\rangle$
(D) $\left\langle 6 t, 3 t^{2}, 1\right\rangle$
(E) I don't know.

Solution. This problem is quite easily solved by integrating each component individually. If we do, we see that $\mathbf{v}(t)=\left\langle 6 t, 3 t^{2}, 0\right\rangle+C$. We are told that at $t=0, \mathbf{v}(0)=\langle 0,0,1\rangle$. Therefore, $\mathbf{v}(t)=\left\langle 6 t, 3 t^{2}, 1\right\rangle$, which is answer choice (D).

Problem 3.2. The position of a particle is given by $\mathbf{r}(t)=\langle 8 \cos t, 3 t, 8 \sin t\rangle$. What is the speed $|\mathbf{v}|$ at $t=\pi$?
(A) $\sqrt{73}$
(B) 3
(C) $\sqrt{4+9 \pi^{2}} / \pi$
(D) $\sqrt{4+9 \pi^{2}}$
(E) I don't know.

Solution. Taking the derivative of each coordinate individually, we see that $\mathbf{v}(t)=$ $\langle-8 \sin t, 3,8 \cos t\rangle$. Therefore, the speed of \mathbf{r} is

$$
\begin{aligned}
|\mathbf{v}(t)| & =\sqrt{64(\sin t)^{2}+9+64(\cos t)^{2}} \\
& =\sqrt{64+9} \\
& =\sqrt{73} .
\end{aligned}
$$

Since $|\mathbf{v}|$ is independent of t we are done. The correct answer choice is (A). \diamond

Problem 3.3 (Problem \# 6 from Spring 2018). Find the length of the curve

$$
\mathbf{r}(t)=\langle 4 \sin t, 3 t,-4 \cos t\rangle, \quad 0 \leq t \leq 1 / 2
$$

(A) $8 \sinh ^{-1}(3 / 8) / 3$
(B) $8 \sinh ^{-1}(3 / 8) / 3+\sqrt{73}$
(C) $5 / 2$
(D) 5π
(E) I don't know.

Solution. To find the length of the curve \mathbf{r} from $t=0$ to $t=1 / 2$, we must first find the derivative:

$$
\mathbf{r}^{\prime}(t)=\langle 4 \cos t, 3,4 \sin t\rangle
$$

Then,

$$
\int_{0}^{1 / 2} \sqrt{16(\cos t)^{2}+9+16(\sin t)^{2}} d t=\int_{0}^{1 / 2} \sqrt{25} d t=5 / 2
$$

Therefore, the correct answer choice is (C).

