MA 261 Exam 1 Solutions

Carlos E S

March 7, 2019

Problem 1.1. A line l passes through the points $(-1,1,2)$ and is perpendicular to the plane $x-2 y+2 z=8$. At what point does the line intersect the $y z$-plane?
Solution. For the line to be perpendicular to the plane $x-2 y+2 z=8$ its direction vector \mathbf{v} must be $\langle 1,-2,2\rangle$ (or a multiple of it). Therefore, the line has the form $l(t)=\langle 1,-2,2\rangle t+(a, b, c)$. We are told that the line passes through the point $(-1,1,2)$ so an equation for the line l is

$$
l(t)=(t-1,-2 t+1,2 t+2)
$$

Last, but not least, we need to find the time t when l intersects the $y z$ plane. This happens when $x=0$, i.e., when $t-1=0$. Therefore, $t=1$ and the point of intersection must be

$$
l(1)=(0,-1,4) .
$$

Problem 1.2. Find the equation of the plane that passes through the point $(1,-1,2)$ and is perpendicular to both the planes $2 x+y-2 z=$ and $x+3 z=10$.

Solution. Recall from class that it is enough to find the normal to a vector. That is,

$$
\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}
$$

where $\mathbf{n}_{1}=\langle 2,1,-2\rangle$ and $\mathbf{n}_{2}=\langle 1,0,3\rangle$. Therefore,

$$
\begin{aligned}
\mathbf{v} & =\mathbf{n}_{1} \times \mathbf{n}_{2} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 1 & -2 \\
1 & 0 & 3
\end{array}\right| \\
& =\langle 3,-8,-1\rangle
\end{aligned}
$$

Now the plane should have the form $3 x-8 y-z=C$. Since the plane passes through the point $(1,-1,2)$, the plane must satisfy $3(1)-8(-1)-(2)=C$ so $C=9$ and the equation of the plane must be

$$
3 x-8 y-z=9
$$

Problem 1.3. Find a vector function that represents the curve of intersection of the cylinder $y^{2}+z^{2}=1$ and the plane $x+y+2 z=3$.

Solution. Assuming the intersection is a curve (i.e., 1-dimensional) we can parametrize the coordinates x, y, and z in terms of a fourth one, say, t. That is, $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$. Now, since \mathbf{r} parametrizes the curve of intersection, its coordinates must satisfy

$$
\begin{array}{r}
y(t)^{2}+z(t)^{2}=1 \\
x(t)+y(t)+2 z(t)=3
\end{array}
$$

so $y(t)=\cos t, z(t)=\sin t$ and $x(t)=3-\cos t-2 \sin t$. So the desired parametrization is

$$
\underline{\mathbf{r}}(t)=\langle 3-\cos t-2 \sin t, \cos t, \sin t\rangle
$$

for $0 \leq t \leq 2 \pi$.
Problem 1.4. Let $\mathbf{r}(t)=\left\langle t, t^{2} / 2, t^{3} / 3\right\rangle$, find $\kappa(1)$ (namely, the curvature at $t=1$).
Solution. Recall that the curvature of a curve \mathbf{r} is defined to be

$$
\begin{equation*}
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}, \tag{1.1}
\end{equation*}
$$

where $\mathbf{T}(t)=\mathbf{r}^{\prime}(t) /\left|\mathbf{r}^{\prime}(t)\right|$ and is called the unit tangent vector.
To get started, we need to find $\mathbf{r}^{\prime}(t)$ and $\mathbf{T}^{\prime}(t)$. These are straightforward calculations, as we now see:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t)= & \left\langle 1, t, t^{2}\right\rangle, \\
\left|\mathbf{r}^{\prime}(t)\right|= & \sqrt{1+t^{2}+t^{4}}, \\
\mathbf{T}(t)= & \left\langle\left(1+t^{2}+t^{4}\right)^{-1 / 2}, t\left(1+t^{2}+t^{4}\right)^{-1 / 2}, t^{2}\left(1+t^{2}+t^{4}\right)^{-1 / 2}\right\rangle, \\
\mathbf{T}^{\prime}(t)= & \left\langle-\left(t+2 t^{3}\right)\left(1+t^{2}+t^{4}\right)^{-3 / 2},\right. \\
& \quad-\left(t+2 t^{3}\right)\left(1+t^{2}+t^{4}\right)^{-3 / 2}+\left(1+t^{2}+t^{4}\right)^{-1 / 2}, \\
& \left.\quad-t^{2}\left(t+2 t^{3}\right)\left(1+t^{2}+t^{4}\right)^{-3 / 2}+2 t\left(1+t^{2}+t^{4}\right)^{-1 / 2}\right\rangle
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|\mathbf{r}^{\prime}(1)\right| & =\sqrt{3} \\
\left|\mathbf{T}^{\prime}(1)\right| & =\sqrt{2 / 3}
\end{aligned}
$$

so

$$
\kappa(1)=\sqrt{2} / 3 .
$$

Problem 1.5. A particle travels with position vector $\mathbf{r}(t)=\langle 3 t, 4 \sin t, 4 \cos t\rangle$, $t \geq 0$. Find $\alpha \geq 0$ such that during the interval of the time from 0 to α the particle has traveled a distance 20.

Solution. This is an arclength problem in disguise. We need to find $\alpha \geq 0$ such that

$$
s(\alpha)=\int_{0}^{\alpha}\left|\mathbf{r}^{\prime}(t)\right| d t=20
$$

That is, first we find \mathbf{r}^{\prime} which is

$$
\mathbf{r}^{\prime}(t)=\langle 3,4 \cos t,-4 \sin t\rangle
$$

so

$$
\begin{aligned}
s(\alpha) & =\int_{0}^{\alpha}\left|9+16 \cos ^{2} t+16 \sin ^{2} t\right| d t \\
& =\int_{0}^{\alpha} 5 d t \\
& =5 \alpha \\
& =20 .
\end{aligned}
$$

Therefore $\alpha=4$.
Problem 1.6. A particle has acceleration $\mathbf{a}=\left\langle 6 t-2,-1 / t^{2}, 0\right\rangle$. It is known that the velocity at the time $t=1$ is $\mathbf{v}(1)=\langle 1,1,1\rangle$ and that the position vector at time $t=1$ is $\mathbf{r}(1)=\langle 0,0,3\rangle$. Find the magnitude of the position vector at time $t=2$.

Solution. This is an initial value problem (IVP). We are trying to find $|\mathbf{r}(2)|$; for that we need to find the equation for $\mathbf{r}(t)$.

First we integrate a to find \mathbf{v} :

$$
\mathbf{v}(t)=\left\langle 3 t^{2}-2 t, 1 / t, 0\right\rangle+\left\langle v_{1}, v_{2}, v_{3}\right\rangle .
$$

Using the initial condition, i.e., $\mathbf{v}(1)=\langle 1,1,1\rangle$, we see that $v_{1}=v_{2}=0$ and $v_{3}=1$ so

$$
\mathbf{v}(t)=\left\langle 3 t^{2}-2 t, 1 / t, 1\right\rangle
$$

Next we integrate \mathbf{v} to get \mathbf{r} :

$$
\mathbf{r}(t)=\left\langle t^{3}-t^{2}, \ln t, t\right\rangle+\left\langle r_{1}, r_{2}, r_{3}\right\rangle .
$$

Again, using the initial condition, we see that $r_{1}=r_{2}=0$ and $r_{3}=2$. Therefore,

$$
\mathbf{r}(t)=\left\langle t^{3}-t^{2}, \ln t, t+2\right\rangle
$$

Lastly, $\mathbf{r}(2)=\langle 4, \ln 2,4\rangle$ so $|\mathbf{r}(2)|=\sqrt{32+(\ln 2)^{2}}$.
Problem 1.7. The level curves of $f(x, y)=\sqrt{x^{2}+1}-2 y$ are
Solution. Fix a real number k and let

$$
\begin{equation*}
k=\sqrt{x^{2}+1}-2 y \tag{1.2}
\end{equation*}
$$

Then, after some algebraic manipulations on Equation (1.2), we get

$$
(k+2 y)^{2}-x^{2}=1
$$

This is the equation of a hyperbola (whose asymptotes have been shifted from their usual position at the origin).

Problem 1.8. If $f(x, y, z)=x z / \sqrt{y^{2}-z}$, then $f_{x y z}(1,2,3)$ is equal to

Solution. This problem is straight forward; we will find the partial derivatives in steps:

$$
\begin{aligned}
f_{x}(x, y, z) & =\frac{z}{\sqrt{y^{2}-z}}, \\
f_{x y}(x, y, z) & =-\frac{y z}{\left(y^{2}-z\right)^{3 / 2}}, \\
f_{x y z}(x, y, z) & =-\frac{y\left(y^{2}-z\right)^{3 / 2}+\frac{3}{2} y z\left(y^{2}-z\right)^{1 / 2}}{\left(y^{2}-z\right)^{3}} .
\end{aligned}
$$

Therefore,

$$
f_{x y z}(1,2,3)=-11
$$

Problem 1.9. Let $z=e^{r} \cos \theta, r=12 s t, \theta=\sqrt{s^{2}+t^{2}}$. The partial derivative $\partial z / \partial s$ is
Solution. For this problem we require the use of the Chain Rule. By the Chain Rule,

$$
\begin{aligned}
\partial z / \partial s & =e^{r}(\partial r / \partial s) \cos \theta-e^{r} \sin \theta(\partial \theta / \partial s), \\
& =e^{r}[\partial r / \partial s \cos \theta-\partial \theta / \partial s \sin \theta]
\end{aligned}
$$

where

$$
\partial r / \partial s=12 t, \quad \partial \theta / \partial s=s / \sqrt{s^{2}+t^{2}}
$$

Thus,

$$
\partial z / \partial s=e^{12 s t}\left(12 t \cos \left(\sqrt{s^{2}+t^{2}}\right)-\frac{s \sin \left(\sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}}\right) .
$$

Problem 1.10. The direction in which $f(x, y)=x^{2} y+e^{x y} \sin y+15$ increases most rapidly at $(1,0)$ is
(Note: Give your answer in the form of a unit vector.)
Solution. Recall that the direction in which a function increases the most rapidly is along its gradient. Therefore, we must find $\nabla f(x, y)$ and, especially, the unit direction vector \mathbf{u} of f at $(1,0)$, i.e., $\mathbf{u}=\nabla f(1,0) /|\nabla f(1,0)|$. First,

$$
\nabla f(x, y)=\left\langle 2 x y+y e^{x y} \sin y, x^{2}+x e^{x y} \sin y+e^{x y} \cos y\right\rangle
$$

Therefore,

$$
\nabla f(1,0)=\langle 0,2\rangle
$$

so $\mathbf{u}=\langle 0,1\rangle$.
Problem 1.11. The equation of the tangent plane to the graph of the function $f(x, y)=x-y^{2} / 2$ at $(2,4,-6)$ is:

Solution. First we need to find the gradient of the function, which is

$$
\nabla f(x, y)=\langle 1,-y\rangle
$$

Therefore, $\nabla f(2,4)=\langle 1,-4\rangle$ so the equation for the tangent plane is

$$
z+6=(x-2)-4(y-4)
$$

so the equation for the plane is $x-4 y-z=-8$ or (as is in the answer choices) $-x+4 y+z=8$.
Problem 1.12. The function $f(x, y)=6 x^{2}+3 y^{2}-16$ attains its local minimum at:

Solution. To find the local minimum of this function we first need to find its critical points. These happen when $\nabla f(x, y)=\langle 0,0\rangle$ and can easily be solved for:

$$
\begin{aligned}
\nabla f(x, y) & =\langle 12 x, 6 y\rangle, \\
12 x & =0, \\
6 y & =0 .
\end{aligned}
$$

So f has the unique critical point $(0,0)$. Now we can check, by the Second Derivative Test, whether this is a minimum or not

$$
f_{x x}(x, y)=12, \quad f_{x y}(x, y)=f_{y x}(x, y)=0, \quad f_{y y}(x, y)=6
$$

so $D=72>0$ and $f_{x x}(0,0)=12>0$, so this is indeed the local minimum. \diamond

