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Problem 1.1. A line l passes through the points (−1, 1, 2) and is perpendic-
ular to the plane x− 2y + 2z = 8. At what point does the line intersect the
yz-plane?
Solution. For the line to be perpendicular to the plane x − 2y + 2z = 8 its
direction vector v must be 〈1,−2, 2〉 (or a multiple of it). Therefore, the line
has the form l(t) = 〈1,−2, 2〉t + (a, b, c). We are told that the line passes
through the point (−1, 1, 2) so an equation for the line l is

l(t) = (t− 1,−2t+ 1, 2t+ 2).

Last, but not least, we need to find the time t when l intersects the yz
plane. This happens when x = 0, i.e., when t− 1 = 0. Therefore, t = 1 and
the point of intersection must be

l(1) = (0,−1, 4).
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Problem 1.2. Find the equation of the plane that passes through the point
(1,−1, 2) and is perpendicular to both the planes 2x+y−2z = and x+3z = 10.
Solution. Recall from class that it is enough to find the normal to a vector.
That is,

v = n1 × n2
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where n1 = 〈2, 1,−2〉 and n2 = 〈1, 0, 3〉. Therefore,

v = n1 × n2

=

∣∣∣∣∣∣∣
i j k
2 1 −2
1 0 3

∣∣∣∣∣∣∣
= 〈3,−8,−1〉

Now the plane should have the form 3x− 8y − z = C. Since the plane passes
through the point (1,−1, 2), the plane must satisfy 3(1)− 8(−1)− (2) = C
so C = 9 and the equation of the plane must be

3x− 8y − z = 9.
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Problem 1.3. Find a vector function that represents the curve of intersection
of the cylinder y2 + z2 = 1 and the plane x+ y + 2z = 3.
Solution. Assuming the intersection is a curve (i.e., 1-dimensional) we can
parametrize the coordinates x, y, and z in terms of a fourth one, say, t. That
is, r(t) = 〈x(t), y(t), z(t)〉. Now, since r parametrizes the curve of intersection,
its coordinates must satisfy

y(t)2 + z(t)2 = 1,
x(t) + y(t) + 2z(t) = 3,

so y(t) = cos t, z(t) = sin t and x(t) = 3 − cos t − 2 sin t. So the desired
parametrization is

r(t) = 〈3− cos t− 2 sin t, cos t, sin t〉

for 0 ≤ t ≤ 2π. 3

Problem 1.4. Let r(t) = 〈t, t2/2, t3/3〉, find κ(1) (namely, the curvature at
t = 1).
Solution. Recall that the curvature of a curve r is defined to be

κ(t) = |T
′(t)|
|r′(t)| , (1.1)
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where T(t) = r′(t)/|r′(t)| and is called the unit tangent vector.
To get started, we need to find r′(t) and T′(t). These are straightforward

calculations, as we now see:

r′(t) = 〈1, t, t2〉,
|r′(t)| =

√
1 + t2 + t4,

T(t) = 〈(1 + t2 + t4)−1/2, t(1 + t2 + t4)−1/2, t2(1 + t2 + t4)−1/2〉,
T′(t) =

〈
−(t+ 2t3)(1 + t2 + t4)−3/2,

− (t+ 2t3)(1 + t2 + t4)−3/2 + (1 + t2 + t4)−1/2,

− t2(t+ 2t3)(1 + t2 + t4)−3/2 + 2t(1 + t2 + t4)−1/2
〉

Therefore,

|r′(1)| =
√

3,

|T′(1)| =
√

2/3,

so
κ(1) =

√
2/3.
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Problem 1.5. A particle travels with position vector r(t) = 〈3t, 4 sin t, 4 cos t〉,
t ≥ 0. Find α ≥ 0 such that during the interval of the time from 0 to α the
particle has traveled a distance 20.
Solution. This is an arclength problem in disguise. We need to find α ≥ 0
such that

s(α) =
ˆ α

0
|r′(t)| dt = 20.

That is, first we find r′ which is

r′(t) = 〈3, 4 cos t,−4 sin t〉,
so

s(α) =
ˆ α

0
|9 + 16 cos2 t+ 16 sin2 t| dt

=
ˆ α

0
5 dt

= 5α
= 20.
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Therefore α = 4. 3

Problem 1.6. A particle has acceleration a = 〈6t− 2,−1/t2, 0〉. It is known
that the velocity at the time t = 1 is v(1) = 〈1, 1, 1〉 and that the position
vector at time t = 1 is r(1) = 〈0, 0, 3〉. Find the magnitude of the position
vector at time t = 2.
Solution. This is an initial value problem (IVP). We are trying to find |r(2)|;
for that we need to find the equation for r(t).

First we integrate a to find v:

v(t) = 〈3t2 − 2t, 1/t, 0〉+ 〈v1, v2, v3〉.

Using the initial condition, i.e., v(1) = 〈1, 1, 1〉, we see that v1 = v2 = 0 and
v3 = 1 so

v(t) = 〈3t2 − 2t, 1/t, 1〉.

Next we integrate v to get r:

r(t) = 〈t3 − t2, ln t, t〉+ 〈r1, r2, r3〉.

Again, using the initial condition, we see that r1 = r2 = 0 and r3 = 2.
Therefore,

r(t) = 〈t3 − t2, ln t, t+ 2〉.

Lastly, r(2) = 〈4, ln 2, 4〉 so |r(2)| =
√

32 + (ln 2)2. 3

Problem 1.7. The level curves of f(x, y) =
√
x2 + 1− 2y are

Solution. Fix a real number k and let

k =
√
x2 + 1− 2y. (1.2)

Then, after some algebraic manipulations on Equation (1.2), we get

(k + 2y)2 − x2 = 1.

This is the equation of a hyperbola (whose asymptotes have been shifted from
their usual position at the origin). 3

Problem 1.8. If f(x, y, z) = xz/
√
y2 − z, then fxyz(1, 2, 3) is equal to
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Solution. This problem is straight forward; we will find the partial derivatives
in steps:

fx(x, y, z) = z√
y2 − z

,

fxy(x, y, z) = − yz

(y2 − z)3/2 ,

fxyz(x, y, z) = −
y(y2 − z)3/2 + 3

2yz(y
2 − z)1/2

(y2 − z)3 .

Therefore,
fxyz(1, 2, 3) = −11.
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Problem 1.9. Let z = er cos θ, r = 12st, θ =
√
s2 + t2. The partial derivative

∂z/∂s is
Solution. For this problem we require the use of the Chain Rule. By the
Chain Rule,

∂z/∂s = er(∂r/∂s) cos θ − er sin θ(∂θ/∂s),
= er[∂r/∂s cos θ − ∂θ/∂s sin θ],

where
∂r/∂s = 12t, ∂θ/∂s = s/

√
s2 + t2.

Thus,

∂z/∂s = e12st
(

12t cos
(√

s2 + t2
)
−
s sin

(√
s2 + t2

)
√
s2 + t2

)
.
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Problem 1.10. The direction in which f(x, y) = x2y+exy sin y+15 increases
most rapidly at (1, 0) is

(Note: Give your answer in the form of a unit vector.)
Solution. Recall that the direction in which a function increases the most
rapidly is along its gradient. Therefore, we must find ∇f(x, y) and, especially,
the unit direction vector u of f at (1, 0), i.e., u = ∇f(1, 0)/|∇f(1, 0)|. First,

∇f(x, y) = 〈2xy + yexy sin y, x2 + xexy sin y + exy cos y〉.
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Therefore,
∇f(1, 0) = 〈0, 2〉

so u = 〈0, 1〉. 3

Problem 1.11. The equation of the tangent plane to the graph of the function
f(x, y) = x− y2/2 at (2, 4,−6) is:
Solution. First we need to find the gradient of the function, which is

∇f(x, y) = 〈1,−y〉.

Therefore, ∇f(2, 4) = 〈1,−4〉 so the equation for the tangent plane is

z + 6 = (x− 2)− 4(y − 4)

so the equation for the plane is x−4y−z = −8 or (as is in the answer choices)
−x+ 4y + z = 8. 3

Problem 1.12. The function f(x, y) = 6x2 + 3y2 − 16 attains its local
minimum at:
Solution. To find the local minimum of this function we first need to find its
critical points. These happen when ∇f(x, y) = 〈0, 0〉 and can easily be solved
for:

∇f(x, y) = 〈12x, 6y〉,
12x = 0,
6y = 0.

So f has the unique critical point (0, 0). Now we can check, by the Second
Derivative Test, whether this is a minimum or not

fxx(x, y) = 12, fxy(x, y) = fyx(x, y) = 0, fyy(x, y) = 6,

soD = 72 > 0 and fxx(0, 0) = 12 > 0, so this is indeed the local minimum. 3
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