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Problem 2.1. The extreme values of f(x, y, z) = 3x+2y+6z with constraint
x2 + y2 + z2 = 4 are
Solution. By the method of Lagrange multipliers, we must find values of x, y,
z and λ satisfying grad f = λ grad g, where g = x2 + y2 + z2 − 4, i.e.,

3 = 2λx,
2 = 2λy,
6 = 2λz.

(2.1)

From Equations (2.1) we can see that y = 2
3x = 1

3z, or z = 3y, x = 3
2y.

Plugging these into the constraint

4 = 9
y

2
+ y2 + 9y2

=
(

9
4 + 1 + 9

)
y2

= 49
4 y

2,

so y = ±4/7. Taking this value of y and putting it into the relations we
obtained from Equations (2.1), we get x = ±6/7 and z = ±12/7. Therefore,

f(±6/7,±4/7,±12/7) = ±(18/7 + 8/7 + 72/7)

= ±98
7

= ±14.
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Therefore, the maximum must be 14 and minimum −14, subject to the
constraint.
Answers: (B), (D). 3

Problem 2.2. Reverse the order of integration and evaluate the integral∫ 1

0

∫ 1

x2
6√y cos(y2) dydx.

Solution. After sketching the region of integration, as we do below,

y = x2

y = 1
(1, 1)

we see that the integral can be easily rewritten as∫ 1

0

∫ √y
0

6√y cos(y2) dxdy,

and this we can easily compute as we do below:∫ 1

0

∫ √y
0

6√y cos(y2) dxdy =
∫ 1

0
6y cos(y2) dy,

making the u-substitution, u = y2, du = 2y dy, this simplifies into

=
∫ 1

0
3 cos(u) du

= 3 sin(u)|10
= 3 sin 1− 3 sin 0
= 3 sin 1.

Answers: (C), (E). 3

Problem 2.3. Evaluate∫ 1/
√

2

0

∫ √1−x2

x
3
√
x2 + y2 dydx

using polar coordinates.
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Solution. If we sketch the region being traced out by the bounds in the double
integral, as we do below

y =
√

1 − x2

y = x

we see that, in polar coordinates, it is a sector with 0 ≤ r ≤ 1, and π/4 ≤
θ ≤ π/2

In polar coordinates, our integral will take the form∫ π/2

π/4

∫ 1

0
3r2 drdθ.

This we can easily compute:∫ π/2

π/4

∫ 1

0
3r2 drdθ =

∫ π/2

π/4
dθ

= π

4 .

Answers: (D), (C). 3

Problem 2.4. Find the area of the part of the plane 3x+ 2y + z = 6 that is
in the first octant.
Solution. Parameterize the plane by r(u, v) = 〈u, v, 6− 3u− 2v〉. Then,

ru(u, v) = 〈1, 0,−3〉,
rv(u, v) = 〈0, 1,−2〉,

ru × rv(u, v) = 〈3, 2, 1〉.
Moreover, the part of the part of the plane which lies in the first octant

requires that x, y, z ≥ 0, so when z = 0, 0 ≤ u ≤ 2 and 0 ≥ v ≤ 3− 3
2u∫ 2

0

∫ 3− 3
2u

0

√
14 dvdu =

√
14
∫ 2

0

(
3− 3

2u
)
du

=
√

14
[
3u− 3/4u2

]2
0

= 3
√

14.

Answers: (B), (D). 3
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Problem 2.5. Consider the tetrahedron E with vertices (0, 0, 0), (1, 0, 0),
(0, 2, 0), (0, 0, 3). Express ∫∫∫

E
x dV

as an iterated integral in the order dzdydx.
Solution. Since we are writing the integral in the order dzdydx we will, for
now, q ignore the origin (0, 0, 0) because it is on the same axis as each of
the other points. Now, the first order of business is to determine the plane
cutting through each of the other points. To this end, write

(1, 0, 0)− (0, 0, 3) = 〈1, 0,−3〉,
(0, 2, 0)− (0, 0, 3) = 〈0, 2,−3〉,

〈1, 0,−3〉 × 〈0, 2,−3〉 = 〈6, 3, 2〉.
Therefore, this plane is of the form 6x+ 3y + 2z = d with d = 6 since (1, 0, 0)
is a point in this plane, so 6x + 3y + 2z = 6. The relevant segment of this
plane is sketched below

Now, if we were to sketch the region, we would see that 0 ≤ z ≤ −3x−
3
2y + 3, 0 ≤ y ≤ 2− 2x, and 0 ≤ x ≤ 1. So the correct integral must be∫ 1

0

∫ 2−2x

0

∫ −3x− 3
2y+3

0
x dzdydx.
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Answers: (C), (A). 3

Problem 2.6. The triple integral
∫ 3

−3

∫ √9−x2

0

∫ √x2+y2

0
8(x2 + y2) dzdydx,

when converted to cylindrical coordinates becomes
Solution. The solid region described, has the following graph

This is the segment of a cone cut by the x axis and reaching the value r2 = 9.
Therefore, in cylindrical coordinates, we have

0 ≤ r ≤ 3, 0 ≤ θ ≤ π, 0 ≤ z ≤ r,

so ∫ 3

−3

∫ √9−x2

0

∫ √x2+y2

0
8(x2 + y2) dzdydx =

∫ π

0

∫ 3

0

∫ r

0
8r3 dzdrdθ.

Answers: (A), (D). 3

Problem 2.7. Evaluate the triple integral
∫∫∫

E(x2 + y2) dV where E is the
solid region in the first octant which is outside the sphere x2 + y2 + z2 = 1
and inside x2 + y2 + z2 = 4.
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Solution. This problem is best approached by changing to spherical coordi-
nates. If we make this change, the integral is easily computed:∫∫

E
x2 + y2 dV =

∫ 2π

0

∫ π

0

∫ 2

1
ρ2 sin2 φ(ρ2 sinφ) dρdφdθ

=
∫ π/2

0

∫ π/2

0

∫ 2

1
ρ4 sin3 φ dρdφdθ

=
(∫ π/2

0
dθ

)(∫ π/2

0
sin3 φ dφ

)(∫ 2

1
ρ4 dρ

)

=
(
π

2 − 0
)(
− cos(π/2) + 1

3 cos3(π/2) + cos 0− 1
3 cos3 0

)(25

5 −
1
5

)

= π

2 ·
2
3 ·

31
5

= 31π
15

To compute the integral
∫ π/2

0 sin3 φ dφ, use the Pythagorean theorem
to turn sin3 φ into sinφ(1 − cos2 φ) = sinφ − sinφ cos2 φ and then use u
substitution with u = cosφ to arrive at∫

sin3 φ dφ = − cosφ+ 1
3 cos3 φ+ C.

Answers: (E), (A). 3

Problem 2.8. Let f(x, y, z) = x2 + y3 + z4 and g(x, y, z) = 3x+ 4y + z2/2.
If ∇f(2, 1,−1) is perpendicular to ∇g(a, b, c), then
Solution. Recall that two vector u and v are perpendicular if and only if
u · v = 0. Therefore, we must find a point (a, b, c) such that the vectors
grad f(2, 1,−1) and grad g(a, b, c) are perpendicular. But first we need to
find what grad f and grad g are:

grad f(x, y, z) = 〈2x, 3y2, 4z3〉,
grad g(x, y, z) = 〈3, 4, z〉.

Thus, grad f(2, 1,−1) = 〈4, 3,−4〉 and grad g(a, b, c) = 〈3, 5, c〉 and for
these vectors to be perpendicular, we must have

grad f(2, 1,−1) · grad(a, b, c) = 12 + 12− 4c = 0

so c = 24/4 = 6.
Answers: (C), (D). 3

6



Problem 2.9. Evaluate the line integral
∫
C xy dx− y2 dy, where C is the line

segment from (0, 0) to (2, 6).
Solution. The first thing we must do is parametrize the line segment from
(0, 0) to (2, 6). This can always be done in the same way, i.e., for a point P
and Q, the line segment from P to Q is r(t) = Qt+ (1− t)P , so in our case
it is

r(t) = (2, 6)t+ (1− t)(0, 0) = 〈2t, 6t〉, 0 ≤ t ≤ 1.
To compute the line integral, we will need r′(t), which is

r′(t) = 〈2, 6〉.
Putting all of this information together, we can calculate the line integral

as follows ∫
C
xy dx− y2 dy =

∫ 1

0
2(2t)(6t)− 6(6t)2 dt

=
∫ 1

0
2(2t)(6t)− 6(6t)2 dt

=
∫ 1

0
(2 · 2 · 6− 6 · 6 · 6)t2 dt

=
∫ 1

0
−32 · 6t2 dt

= −32 · 6
[
t3

3

]1

0
= −64.

Answers: (D), (B). 3

Problem 2.10. Evaluate the line integral
∫
C 9x/y ds, where C is the curve

x = t3/3, y = t4/4 with 1 ≤ t ≤ 2.
Solution. To compute the line integral, we need to find absr′(t). The curve is
r(t) = 〈t3/3, t4/4〉 and its derivative is r′(t) = 〈t2, t3〉 so

|r′(t)| =
√
t4 + t6 = t2

√
1 + t2.

Therefore, the line integral is∫
C

9x
y
ds =

∫ 2

1

12
t
t2
√

1 + t2 dt

= 12
∫ 2

1
t
√

1 + t2 dt
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which, by u substitution with u = 1 + t2, becomes

= 12
∫
u1/2 du

2
= 6

∫ 5

2
u1/2 du

= 6
[

2
3u

3/2
]5

2

= 4(53/2 − 23/2).

Answers: (B), (E). 3
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